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Number of Interactions

* Number of neutrino events:

Volume of the
detector V Number of interactions

Neutrino per second

flux ¢

Cross section o Density of targets n
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Neutrino Cross Section

* What is the cross section!?
- A measure of the probability of an interaction occurring

Volume of the
detector V Number of interactions

Neutrino per second

flux ¢

Cross section o Density of targets n

[- \/ Number of interactions that occurred

Cross Section O' —
Total flux of incident neutrinos per unit area / ®T

\ Number of targets

Neutrinos interact only by O'(VN) ~ 10—386m2 — tiny
week force, at 1 GeV

compare with J(pp) ~ 10_26cm2
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Different Neutrino Sources

* Different neutrino sources determine the range of energies
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* Few GeV energy range neutrinos are very important for accelerator neutrino
oscillations

* This talk reviews a few neutrino interactions relevant to neutrino oscillation at the few
GeV region (Quasi-Elastic and Resonance)

* What happens when a few GeV neutrino interacts with a particle detector?
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Neutrino Interactions

Charged Current (CC) interactions Neutral Current (NC) interactions
via a W-boson via a Z-boson
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Neutrino Interactions

Charged Current (CC) interactions Example of charged Current Interaction
via a W-boson
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Charged Current Interactions

Quasi-elastic scattering (QE)

P——

Resonance production (RES)
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Deep Inelastic scattering (DIS)

7 Minerba Betancourt

The neutrino scatters elastically off the
nucleon ejecting a nucleon from the target

The neutrino can excite the target nucleon
to a resonance state

1 DATAEvent

1t candidate

The neutrino scatters off a quark in the
nucleon producing a hadronic system in
the final state
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Charged Current Interactions

Quasi-elastic scattering (QE)

Resonance production (RES)
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Why Do We Study Charged Current Interactions?

* Charged current processes are signal channels for oscillations experiments

* Due to nuclear effects combined with cross section, the signal channel and neutrino
energy measured in detectors are not necessarily the same as the initial interaction

CC Quasi-Elastic CC Resonance
v ]” v - Pion Absorption: Due to final state

I [ , , : : :
\/ \/ . interactions particles can interact with
‘ nucleons before exiting the nucleus
W+ ’/Lv+<rt'

* A pattern of neutrino oscillation is analyzed based on distributions of detected
particles and it is crucial to have a reliable Monte Carlo generator to read this
pattern correctly

* Recent experimental data is not well described by current models

* Understanding the neutrino interactions with nuclei is vital for precision oscillation
measurements
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Neutrino Beam

* A proton beam interacts with a target and produces pions and kaons

* We use magnetic horns to focus the charged particles. These charged particles
decay and produce the neutrino beam

* Long baseline experiments use near and far detectors to study neutrino oscillations

Detector

Neutrino beam
Tl"" e L T T —— >

—— M
b [\ K

* To get sufficient statistics for oscillations we use powerful beams

* This powerful beam gives large statistics for near detector experiments to study
neutrino scattering

* Different technologies are used to detector neutrinos
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Near and Far Detector

Source

Near Detector Far Detector

Events at the Near Detector = ¢ X 0 X €

Events at the Far Detector = ¢ x o x € x P, v,

* Flux is different in the near and far detector,so ¢ x o is too

* So while the two detectors help, one still needs to predict the ¢
and o separately
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Cross Section Experiments

* Modern neutrino experiments using neutrino from accelerators
- Different detector technologies and targets: MiniBooNE |
* Oxygen, carbon, iron, liquid argon, helium, lead..
- Different neutrino beams
* Common goal for all the experiments:

- Study neutrino interactions ;

* For this talk, using examples from the MINERVA experiment NOMAD
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Review of Quasi-Elastic Scattering

* The Quasi-Elastic channel is one of the simplest channels in neutrino scattering
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Quasi-Elastic Scattering (CCQE)

* We use the free nucleon CCQE formalism

do  M?*G% cos®Oc
AQyr 8w E?2

S —U

(A@) + BQ) = + 0@

* Sign on B term is minus for neutrinos, plus for antineutrinos
* Gr is the Fermi constant, .17 x 10> GeV?

* M is the average nucleon mass, 938.92 MeV

* O¢cis the Cabbibo angle cosfc = 0.9742

* Eis the neutrino energy

* s and u s are Mandelstam variables
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Quasi-Elastic Scattering (CCQE)

* We use the free nucleon CCQE formalism

do  M?*G% cos®Oc S —u (s — u)?

= A(Q?) £ B(Q? C(Q’
* Where 2 | )2
o M0 Q. QL @@

G, G .

PO R(FLER) — o1+ o) (PR
m? 2

- it |11 R Fa+ 280 =400+ ) (PP + 1))

2 2 2

BQH) = 1 Re [F3(Fi + €|~ Th Re |(Fy = r¢R)F = (B - 50 o))

2
CQ) = { P+ FE +r(eh + 16}

* Most of the form factors are known, except the axial form factor Fa.This is
parameterized as a dipole

2= Fermilab

15 Minerba Betancourt 07/07/16



Quasi-Elastic Scattering (CCQE)

* The Quasi-elastic process gives the largest contribution for the signal in many
oscillation experiments

* Early neutrino experiments used bubble chambers filled with D, with excellent
purity 97-99%

* Modern experiments use different targets, such as carbon, iron, oxygen, liquid
argon...etc

* We have more statistics, but with the heavy targets we have more nuclear effects
which brings additional challenges

* |In addition purities are much lower, below 80%

The QE selection varies from experiment to experiment, some experiments use
only the muon and others use the proton and muon

MiniBooNE

NOMAD

MINERVA
52227620;5{ | Run 15049 Event 11514 | \\
W= tscer’ (T BT B -
Pt,,=0.05 GeV Muon track: P=56.39GeV; §=0.78" > )
1IN | 3
IP ton track. 0
O 7/
‘ ‘ O L s
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Quasi-Elastic Scattering (CCQE) Using D>

These experiments measured the axial mass Ma, pretty good agreement between the
experiments

 EVENTS/0.06 (Gev/c)?2
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Quasi-Elastic Scattering (CCQE)

Some examples of modern experiments:

NOMAD experiment uses carbon as a target and a tracker detector with high
energy experiment <E>=24GeV, both 1 and 2 track were measured (purity 50%).
Signal definition: quasi-elastic events
MiniBooNE uses carbon as a target and a Cherenkov detector with low energy
<E>=0.8GeV, analysis used Vu CC with no pions (purity 77%). Signal definition:
events with no pions

Data is compared against a prediction based on Relativistic Fermi Gas Model

w1 0-39 MiniBooNE Collaboration, Phys.Rev. D81 (2010) 092005
o 16 MiniBoonNE data fits better to
-E 145 (b) an Axial Mass 1.35 GeV
“;‘ 125 - while NOMAD fits to an Axial
13;— - +++} ++*h*i* Mass of 1 GeV
= n MiniBooNE data with total error
(L]== NOMAD data with total error
4c Iﬁﬁm dac:ﬂlwmlj]hh:[t 11,03 GeV. x=1.000
- S ______ T it =1. wV.ke=1.
2E RFG model with M¥=1.35 GV, x=1.007 puzzie?
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Quasi-Elastic Scattering (CCQE)

* Inclusion of the multi nucleon emission channel (np-nh) gives better agreement with

data without increasing the axial mass Genuine CCQE
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M. Martini, M. Ericson, G. Chanfray, J. Marteau Phys. Rev. C 80 065501 (2009) W+ absorbed by a pair of nucleons

* Theorists have made a lot of effort these past years to improve models
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Nuclear Effects in Elastic Scattering
* Two effects

* In a nucleus, the target nucleon has some initial momentum which modifies the
observed scattering

* Often handled in a “Fermi Gas” model of nucleons filling available states up to
some initial state Fermi momentum, ks

* Outgoing nucleon can interact with the target
* Usually treated as a simple binding energy

* Also, Pauli blocking exists for nucleons not escaping nucleus, because states are
already filled with identical nucleon
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Final State Interactions

* Final state interactions: Hadrons produced in a scattering interaction re-interact

with other nucleons before they escape the nucleus

* Thus, particles that exit the nucleus might be different, both in type and in energy

from those generated in the initial interaction

* Final states can contribute to apparent “quasi-elastic’” scattering

* These effects are big
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Example: Measuring Differential Cross Section

* Let’s review a measurement from the MINERVA experiment as an example

* We already talk about flux, number of target and number of neutrino interactions,
let’s review the other components

Events Selected

Unfoldi
nrotaing Backgrounds

\ b\kgd

d_U B Zj Uja(Ndata,,j o da,ta,,j
dx

=

Acceptance

Flux Targets
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bkgd
(d_O') . Zj Uja(Ndata,j - Ndatga,j)

Flux dx Ay (PT)(Ax)

— Muon monitors
|F|gure courtesy Z. Pavlovi¢ Absorber
— Decay Pipé MINERVA
orn
Target \
} l/, — | i
‘J_’ -~ B =
Protons in 10m 30m ,_—_—————’/_‘—. Hadron =i Rock 12m RRAE
675 m Monitor

* The neutrino flux is hard to calculate and an important source of systematic
uncertainty

* We have a prediction for the flux with uncertainties about ~8%

NuMI Low Energy Beam

Corrected Flux

Vi

Y . . . . . . . ... oee-e-eesssssessassssssssssssssses

0824 6 8 10 12 14 16 18 20
v energy (GeV)
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bkgd
(dO’) . z] Ujoc (Ndata,j o Ndatga,j)

dx Ay (BT (Ax)

Selected Events

* We make a selection based on the topology of the event
* In the case of Quasi-Elastic scattering, what are we looking for in the detector?

* But all we can measure is how energy is deposited in the detector
* We use our physics knowledge to infer what patterns of energy deposition
correspond to our process, but it’s not easy
* Different processes can produce the same final state particles
* Different initial interactions can produce the same final state particles
* Some particles or configurations are difficult to detect (examples: neutral
particles, two particles traveling right on top of one another)
* Even after our selection cuts, we have some background events that pass the cuts

2= Fermilab
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do\ 25 Uja Naata,j — Niatn)
dr ). Ay (®T)(Ax)

Signal and Background

* Signal event: an event that matches what our analysis is looking for, regardless of
whether we manage to identify the underlying process

* Background event:is an event that passes our analysis cuts, but which is not actually
a true signal event. These events mimic our signal

n Y absorbed by

the nucleus _ QM
w- A
@

L s G o
"™ :

Background event :VQ

neutron

escape: fakes

O

* Other processes like the resonance interactions produce pions, but these can be
absorbed in the nucleus (final-state interactions), faking the signal
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Simulations

* We use Monte Carlo simulations (GENIE) for the analysis GENIE
\\:r“f/
Neutrino Interaction Simulation steps -
v, |
Vv
Neutrino interaction modelling can be
broken-up in the following 4 pieces :
\ ZW
f_____"‘If_"__"“lf____“‘lf______ﬂ
| | | | |
Pa P ! | | / g
S ONAL | ! '{\f 1
| ‘:. \¢/ | | | ) \ N
| @ @ I III'-, x‘\‘ |
| /| | | A
| nhuclear model |primary interaction, | hadronization | | intranuclear |
| (cross section) | | | ~ hadron
| | | | ) | transport |
e o . o e Y e o omm o % om e o — . —— . —
Costas Andreopoulos, Rutherford Appleton Lab._
3¢ Fermilab
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Signal and Background

* We identify the particles

* Measure properties of those particles

* Momentum, angle and energy

bkgd
(d0'> o Zj Uja (Ndata,j o Ndafa,j)

dz Ao (®T)(Ax)

m2 — (mp — Eb)2 — mi -+ Q(mp — l?b)l?'u

. n
Neutrino Energy L=
03 Statistical Errors Only
1.6 MINERVA ¢ ¥V Tracker — CCQE

—
~

ents / 200 MeV

Vv
O\ ¢
~

o
N

Signal
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v, CCDIS

POT Normalized
1.01e+20 POT

o
O

8 10
Reconstructed Neutrino Energy (GeV)

Other /

2(my, — By — B, +p, cosb,)

Background

We use Monte Carlo simulations (GENIE) to
determine the background levels, but this is
not enough, most of the time the models do
not reproduce the real data

2= Fermilab

07/07/16



Signal and Background

Nbkgd )

data,j

Zj Uja (Ndata,j -
N Ao (2T)(Ax)

* We identifies the particles

* Measure properties of those particles

* Momentum, angle and energy

B

* Using the muon momentum and angle, we can compute the four momentum

transfer
E

2

m,, —

(mp — Ep)* —m2 4 2(my, — Ey)E,

QE—

Q* = —mi +2Fge(E, —p, cosfu)

2(mp — Ey — E,, + p,, cosb,)

* Let’s concentrate on describing how to measure the differential cross section as a

function of Q2 «10°

Statistical Errors Only

MINERVA ¢ Vv Tracker — CCQE

2

CCQE

1

Selected events s

).6

CC Resonant

Other

).4

POT Normalized
1.01e+20 POT

).2

0.5 1 1.
Reconstructed Q2 (GeV?)
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Main background from
Resonant interactions
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Background Prediction

(i),

- 22 Uja (Naata,j — Ngadd )
N A (@T)(Ax)

We know the Monte Carlo models do not reproduce the real data
Data is used to constrain the backgrounds
Data driven background fit methods can reduce model-dependence
An example from a MINERVA background constraint:
* Taking the shape of the signal and background distributions in the Monte Carlo

simulation

* The relative weights of each of t
combination that best matches t

Looking at the sideband region he

region
25 MINERVA Preliminary ® VCH — CCQE
1.8
1.6F
- . — 7V, CCQE
1.4F MCI Slgnal —V: non-CCQE
1.2;—

1'_

0.4

0

Non-Vertex Recoil Energy (GeV)

29  Minerba Betancourt

o‘. s PERAIT G g
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0.6

Signal
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Reconstructed Q? (GeV?)

2

Non-Vertex Recoil Energy (GeV)

nese distributions are varied until we get the
ne shape of the data

ps us to constrain the background in the signal

23 MINERVA Preliminary ¢ VCH — CCQE
1.8
1'6;_ MC, — ¥, CCQE
1.4 —— ¥V, non-CCQE
- background g
1.2:—
1=
0.8~ Sideband
0.6}-
0.4F
0.2' Signal
00 0.5 1 1.5 2
Reconstructed Q? (GeV?)
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Example of Background Constraints

* We obtain weights for each bin of Q?

x10°
1.6 MINERVA ® ¥V Tracker — CCQE
1.4
=2 Q2_ < 0.05 GeV?
= 1.2 After Fit
o Bkqgd Scale = 1.02 + 0.03
- i 9
l‘-—" -
()] 0.8 nl —+— Data
3 YL E== Monte Carlo
..5 0.6 E' Background
'E N
S 0.4f
& -
- fLr“"dA‘-»v,.,,
[ SR R |~
% 100 200 300 400

Recoil Energy (MeV)
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500

MC Background Fraction Scale

o\ XU Ny — N
dx A(OT)(Ax)

(0

Background levels are estimated by fitting recoils distributions

1.4
1.3
1.2
1.1
1
0.9
0.8
0.7

0.6

MINERVA ® v Tracker — CCQE
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Background Subtraction

do\ X, UpaNaway —~ NI )
dz )., Ay (T (Ax)

* After the background is constrained with data, we subtract the predicted
background contribution from each bin of the desire quantity we want to measure

5 2)(1 03 Statistical Errors Only
c\'> "““EMINERVA Preliminary ¢ v Tracker — CCQE
()} 2
(O] -
8 1.85—
; 1.4
E 1.2 ? ) —— Data
g 1 == Monte Carlo
LLl 0.83— Data Bkgd
0.6
0.4 POT Normalized
— 9.42e+19 POT
0.2 .
O:||||||||||||||||||||||||||||||T|||||||
0O 02040608 1 12141618 2

Reconstructed Q2 _ (GeV?)
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Events / 0.05 GeV?
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i‘l 03 Statistical Errors Only
-MINERVA Preliminary ® v Tracker — CCQE
—+— Data
= Monte Carlo

POT Normalized
1.01e+20 POT

ETEIER SR |

Reconstructed Q2 _ (GeV?)
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Unfolding

dz

do . Zj Uja:(Ndata,j - Nsi:fj,j)
. Ao (®T)(Ax)

* We can’t measure (or reconstruct) events with perfect precision, so we will always
reconstruct some events into the wrong bin

500

400

300

200

100

::‘Fj

True
distribution

500

400

300

200

100

Reconstructed (smeared)
distribution

* This has the effect of smearing out the features of our true distribution

* Correcting for the effects of detector smearing, which causes some events to be
reconstructed into the wrong bin. The goal is, when presented with a smeared
distribution, to recover out true distribution
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Unfolding

[

d_a
dx

).

bkgd
L Zj Uja:(Nda,ta,,j o Ndafa,j)

Ao(®T)(Ax)

* We want to know, if an event is observed in bin j, what bin did it really happen in?
In other words, what’s the probability that an event observed in bin j actually

occurred in bin o?

We can use our Monte Carlo to infform a migration matrix indicating what fraction
of events generated in each bin & were observed in each reconstructed bin |

If we've done a good job with our initial reconstruction, the matrix should be close

to diagonal

In addition, if we chose bins that are too small compared to our resolution. This is

also a problem because the matrix is not as diagonal

33 Minerba Betancourt
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do . Zj Uja:(Ndata,j - Nss;?j,j)
. Ao (®T)(Ax)

Unfolding

* Example from Quasi-Elastic scattering

e - 80 ©
= 10 &)
m - 70 € Diagonal
Q i —
3 . corresponds to
|= 8_— —60 g events
- oc reconstructed in
) 50 4= . :
61— (o]
i c
: ¥
4_— 30 ©
i o
i 20 L.
2_
i 10
- N B T S
O0 2 4 6 8 10 .
Reco Bins

* To get the unsmearing matrix U, we must invert the migration matrix

Cheryl Patrick, MINERVA 101 e
S Fermilab
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bkgd
(d0> . Zj Uja(Ndata,j o Ndafa,j)

Efficiency Correction Ao (2T)(Az)

* A measure of how often we select signal events
* Inefficiency comes from reconstruction and detector geometry

number of signal events after event selection

£= : :
number of signal events in Monte Carlo

* An example from detector acceptance

Some analyses require muon track to
be matched to a track in MINOS.
Events where the muon exits the side
of detector will be rejected

Outer detector
Beam

> Inner
detector

MINOS

Cheryl Patrick, MINERVA 101
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d_U o Zj Ujoz(Ndata,j - Ncli):fj,j)
de )~ A, (@T)(Az)

Efficiency Correction

* Unfolded distributions are normalized by efficiency, flux and proton number to
produce final cross section

x107° MINERVA ® ¥ Tracker — CCQE

1 — E 20 —+— Data
o oof MINERVA ® V Tracker — CCQE o 18 B Monte Carlo
e F E 16
g % R
S 0.7 > 14
= - Q
w 0.6 l:'__'J__ 12
*8 05 NE 10
€ 0.4f e - 8 {
-E - o O 6
o 0.3 ]
) g — =, 4
S 0.2 2 i
< o1f y © 2 .

- | | | APEPE PR B B BN B . . o = = e . o e e

OD 0.5 1 15 > 00 02 04 06 08 1 12 14 16 18 2

2
QEE (GeVz) QQE (GE“Z)
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Systematic Uncertainties

w103 MINERVA ® ¥ Tracker — CCQE
S 20E- —+ Data
5 18 B= Monte Carlo
§ 16
od [
- 14
m L
§ ol
€ 10 !
L 8 ]
] 1
SR _
] 0.4 MINERVA ® ¥ Tracker — CCQE
Pﬁ 4 1 .E‘ = Total
o 2 = A e Statistical
...I...I...I...Iml—l—l—l-'-l—v—v—!—v—l—l— .E GBE ;quIH st ii
0 ~0204 06 08 1 12 14 16 1.8 2 ¢ 03  Muo e ruetion
2 (GeV?) c T Hadron Interaction
QQE( € = 0.25F——— Primary Interaction
© Other
c 0.2
9O
C o 0.15
Flux uncertainties ©
Tl 4 T | e e SCGREEEETEEEEEEEEE
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Comparing with Models
* Data do not agree with some models

Eﬂﬂ Lt MINERvA ® v Tracker — CCQE 54 MINERvVA ® v Tracker — CCQE
t _F E
o 18 + data 2'25 « data — NuWro RFG M,=1.35
S 16F ——— NuWro RFG M,=1.35 2 GENIERFGM,=0.99 ... NuWro RFG M, =0.99 + TEM-—
E g LN NuWro RFG M, =0.99 + TEM UEJ 1.8 NuWro RFG M,=0.99 —— NuWro SF M,=0.99
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As an example of final state interaction effects,

let’s review a couple of examples from pion

production

Let's concentrate on the pion candidate

39  Minerba Betancourt

A

DATA Event

/'

ucandidate
|

UUUUUUUUUU

m-r~randidatas
“ﬁ‘l\p canaidate

n candidate

07/07/16

2= Fermilab



Final State Interactions

* Final state interactions: Hadrons produced in a scattering interaction re-interact

with other nucleons before they escape the nucleus

* Thus the particles that exit the nucleus my be different, both in type and in energy

from those generated in the initial interaction

* Final states where pion is absorbed can contribute to apparent “quasi-elastic”

scattering
* These effects are big
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Charged Pion Production

Most experiments use the Rein-Sehgal model for nuN resonance production
More recent models by M. Athat, Salamanca-Valencia, M. Pascos
Experimentalist’s dilemma: Whichever model you use, it will be poorly constrained by nuN

data | | |
Recent reanalysis of deuterium data finds
Old bubble chamber deuterium data consistency between ANL and BNL
14 T rrrr T
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All the generator are tuned to bubble chamber deuterium data
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Comparisons of Models with Data from MiniBooNE

Data is compared against a theoretical model (GIBUU)
Data prefers GIBBU with no FSI for both n® and =*

2 — T e——————————r—
j no FSI T221 | 12 before FSI
| wFSI =3 | - {» . afterFS _
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Comparison of Models with Data from MINERVA

Differential cross section as a function of pion kinetic energy, left absolutely normalized and

right area normalized
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NEUT and NuWro normalization agree the best with data
GIBBU, GENIE normalization disfavored

Phys. Rev D92(2015)
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MINERVA and MiniBooNE Data

e No models describe all data sets well
e MiniBooNE <E>~1 GeV: best theory models (GIBUU) strongly disagree in shape
e MINERVA <E>=4 GeV: Event generator has shape but not magnitude
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Present and Future

* We have several experiments studying different neutrino interactions and
making precise cross section measurements

- MINERVA, T2K, NOvA, MiniBooNE,ArgoNeut NOMAD and others..
* Future neutrino oscillation experiment (DUNE) will use new detector

technology

- New targets made of liquid argon

* Several experiments in the lab are leading the effort for the liquid argon
(MicroBooNE, SBND and ICARUS)

Charged current candidate
from MicrooBooNE

"
l)cm Run 5208 Event 5108, February 29th 2016
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Summary

* Some cross section measurements are challenging because nuclear effects are not
easy to disentangle

* We need to understand the interplay between nuclear effects and cross sections in
neutrino nucleus interactions

* However, cross sections are very important, since they help us perfect the nuclear
model we have in our event generator (GENIE)

* The nuclear model is esencial to transfer information from the near detector to the
far detector in oscillation experiment

* Understanding the neutrino interactions with nuclei is vital for precision oscillation
measurements
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