Fermilab **Energy** Office of Science

A light dark sector to explain MiniBooNE's low energy excess or Has MiniBooNE observed the mechanism behind v masses?

Pedro A. N. Machado October 2018

Based on 1807.09877 and 1808.02500 in collaboration with E. Bertuzzo, S. Jana and R. Zukanovich-Funchal

October/2018

pmachado@fnal.gov

Many anomalies in short baseline neutrino experiments

Explanation is a challenge - tensions, ad hoc models, etc

LSND experiment

@Los Alamos

Intense proton beam $p + X \rightarrow \pi^+ + X'$ $\downarrow \rightarrow \mu^+ \nu_\mu \text{ (DAR)}$ $\downarrow \rightarrow e^+ \nu_e \bar{\nu}_\mu$

LSND detected more $\bar{\nu}_e$ than expected (3.8 σ excess)

pmachado@fnal.gov

MiniBooNE Experiment

pmachado@fnal.gov

🛟 Fermilab

Other anomalies

Gallium calibration experiments and theoretical cross sections

pmachado@fnal.gov

arXiv:1805.12028v1 [hep-ex] 30 May 2018

MiniBooNE's low energy excess

The MiniBooNE Collaboration

Observation of a Significant Excess of Electron-Like Events in the MiniBooNE Short-Baseline Neutrino Experiment

What is going on???

Translating to *theorist language*:

What sort of new physics can explain these anomalies?

8 Oct/2018 P.A.N. Machado I A light dark sector to explain MiniBooNE's low energy excess - 1807.09877 / 1808.02500

pmachado@fnal.gov

‡ Fermilab

Published for SISSA by \bigstar Springer

RECEIVED: April 12, 2018

Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos

Mona Dentler,^{*a*} Álvaro Hernández-Cabezudo,^{*b*} Joachim Kopp,^{*a,c*} Pedro Machado,^{*d*} Michele Maltoni,^{*e*} Ivan Martinez-Soler^{*e*} and Thomas Schwetz^{*b*}

Published for SISSA by 2 Springer

RECEIVED: April 12, 2018

Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos

Mona Dentler,^{*a*} Álvaro Hernández-Cabezudo,^{*b*} Joachim Kopp,^{*a,c*} Pedro Machado,^{*d*} Michele Maltoni,^{*e*} Ivan Martinez-Soler^{*e*} and Thomas Schwetz^{*b*}

$$\sin^2 2\theta_{\mu e} = 4 |U_{e4} U_{\mu 4}|^2$$

Published for SISSA by 2 Springer

RECEIVED: April 12, 2018

Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos

Mona Dentler,^{*a*} Álvaro Hernández-Cabezudo,^{*b*} Joachim Kopp,^{*a,c*} Pedro Machado,^{*d*} Michele Maltoni,^{*e*} Ivan Martinez-Soler^{*e*} and Thomas Schwetz^{*b*}

$$\sin^2 2\theta_{\mu e} = 4 |U_{e4}U_{\mu 4}|^2$$

Leads to v_e disappearance

Published for SISSA by 2 Springer

RECEIVED: April 12, 2018

Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos

Mona Dentler,^{*a*} Álvaro Hernández-Cabezudo,^{*b*} Joachim Kopp,^{*a,c*} Pedro Machado,^{*d*} Michele Maltoni,^{*e*} Ivan Martinez-Soler^{*e*} and Thomas Schwetz^{*b*}

$$\sin^2 2\theta_{\mu e} = 4 \left| U_{e^4} U_{\mu 4} \right|^2$$

Leads to v_{μ} disappearance

Published for SISSA by 2 Springer

RECEIVED: April 12, 2018

Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos

Mona Dentler,^{*a*} Álvaro Hernández-Cabezudo,^{*b*} Joachim Kopp,^{*a,c*} Pedro Machado,^{*d*} Michele Maltoni,^{*e*} Ivan Martinez-Soler^{*e*} and Thomas Schwetz^{*b*}

$$\sin^2 2\theta_{\mu e} = 4 |U_{e^4} U_{\mu 4}|^2$$

Leads to v_{μ} to v_{e} appearance

2 variables: $U_{e4}, U_{\mu4}$

3 data sets: v_e -DIS, v_μ -DIS, v_e -APP

Published for SISSA by \bigstar Springer

RECEIVED: April 12, 2018

Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos

Mona Dentler,^{*a*} Álvaro Hernández-Cabezudo,^{*b*} Joachim Kopp,^{*a,c*} Pedro Machado,^{*d*} Michele Maltoni,^{*e*} Ivan Martinez-Soler^{*e*} and Thomas Schwetz^{*b*}

$$\sin^2 2\theta_{\mu e} = 4 |U_{e^4} U_{\mu 4}|^2$$

4.7 σ **tension** between APP and DISAPP data sets under eV sterile interpretation

Exercise: remove each experiment and see if agreement improves

Published for SISSA by 2 Springer

RECEIVED: April 12, 2018

Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos

Mona Dentler,^{*a*} Álvaro Hernández-Cabezudo,^{*b*} Joachim Kopp,^{*a,c*} Pedro Machado,^{*d*} Michele Maltoni,^{*e*} Ivan Martinez-Soler^{*e*} and Thomas Schwetz^{*b*}

Analysis	$\chi^2_{\rm min,global}$	$\chi^2_{ m min,app}$	$\Delta \chi^2_{ m app}$	$\chi^2_{ m min,disapp}$	$\Delta \chi^2_{\rm disapp}$	$\chi^2_{\rm PG}/{ m dof}$	PG
Global							3.71×10^{-7}
Removing anomalous data sets							
w/o LSND		MiniBooNE 2012 data set					
w/o MiniBooNE		-					5.2×10^{-6}
w/o reactors							3.8×10^{-5}
w/o gallium							4.4×10^{-8}
Removing constraints							
w/o IceCube							4.2×10^{-7}
w/o MINOS(+)							4.7×10^{-6}
m w/o~MB~disapp							$6.0 imes 10^{-7}$
w/o CDHS							$7.5 imes 10^{-7}$
							た Eormilob

pmachado@fnal.gov

Published for SISSA by 🖉 Springer

RECEIVED: April 12, 2018

Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos

Mona Dentler,^a Álvaro Hernández-Cabezudo,^b Joachim Kopp,^{a,c} Pedro Machado,^d Michele Maltoni,^e Ivan Martinez-Soler^e and Thomas Schwetz^b

What is going on?

Sterile v at the eV scale present strong tension between data sets

Cosmological bounds further threat the eV sterile hypothesis

Is there an explanation that is not ruled out?

Adding more ingredients may alleviate the case for light steriles *Too ad hoc?*

Is there a real model for these explanations?

Can this relate to any of the theoretical problems of the SM?

Is there an explanation that is not ruled out?

Adding more ingredients may alleviate the case for light steriles *Too ad hoc?*

Is there a real model for these explanations?

Can this relate to any of the theoretical problems of the SM?

Explaining MiniBooNE's low energy excess

arXiv:1805.12028v1 [hep-ex] 30 May 2018

MiniBooNE's low energy excess

The MiniBooNE Collaboration

Observation of a Significant Excess of Electron-Like Events in the MiniBooNE Short-Baseline Neutrino Experiment

arXiv:1805.12028v1 [hep-ex] 30 May 2018

MiniBooNE's low energy excess

The MiniBooNE Collaboration

Observation of a Significant Excess of Electron-Like Events in the MiniBooNE Short-Baseline Neutrino Experiment

MiniBooNE's low energy excess

8 GeV proton beam

Signal consists of electron-like ring

Excess is correlated with beam in power, angle and timing

It is present in positive and negative horn polarities

It is not present in beam dump configuration

It looks like it comes from neutrinos

MiniBooNE is a mineral oil (CH₂) detector that can observe Cherenkov radiation of charged particles

MiniBooNE's low energy excess

There is a dark sector with a novel interaction

Bertuzzo et al 1807.09877

P.A.N. Machado I A light dark sector to explain MiniBooNE's low energy excess - 1807.09877 / 1808.02500 24 Oct/2018

There is a dark sector with a novel interaction

Right-handed neutrinos are part of the dark sector and are subject to new interaction

Bertuzzo et al 1807.09877

There is a dark sector with a novel interaction

Right-handed neutrinos are part of the dark sector and are subject to new interaction

Mixing between RH and LH neutrinos leads to interaction in active neutrino sector

Bertuzzo et al 1807.09877

😤 Fermilab

There is a dark sector with a novel interaction

Right-handed neutrinos are part of the dark sector and are subject to new interaction

Mixing between RH and LH neutrinos leads to interaction in active neutrino sector

Mixing between Z_D and photon leads to interaction with protons

Bertuzzo et al 1807.09877

There is a dark sector with a novel interaction

Right-handed neutrinos are part of the dark sector and are subject to new interaction

Mixing between RH and LH neutrinos leads to interaction in active neutrino sector

Mixing between Z_D and photon leads to interaction with protons

Bertuzzo et al 1807.09877

There is a dark sector with a novel interaction

Right-handed neutrinos are part of the dark sector and are subject to new interaction

Mixing between RH and LH neutrinos leads to interaction in active neutrino sector

Mixing between Z_D and photon leads to interaction with protons

🚰 Fermilab

pmachado@fnal.gov

30

There is a dark sector with a novel interaction

Right-handed neutrinos are part of the dark sector and are subject to new interaction

Mixing between RH and LH neutrinos leads to interaction in active neutrino sector

Mixing between Z_D and photon leads to interaction with protons

.gov

If e⁺e⁻ pair is not collimated, event will not look e-like

If e^+e^- pair is collimated ($cos\theta_{ee} > 0.99$ -ish), it will be classified as e-like

dirt other 4

A light dark sector phenomenology

If e⁺e⁻ pair is collimated ($cos\theta_{ee} > 0.99$ -ish), it will be classified as e-like

7 Fermilab

pmachado@fnal.gov

N should be heavy (> 100 MeV) so its decay products are not so boosted 1)

 Z_D should be light (< 60 MeV) so that the e⁺e⁻ pair is collimated 2)

A light dark sector pheno

Fit to energy spectrum only (Official MB data release)

Benchmark

$$\begin{split} m_{N} &= 320 \text{ MeV} \\ m_{Z'} &= 60 \text{ MeV} \\ |U_{\mu 4}|^{2} &= 10^{-6} \\ \alpha_{D} &= 0.25 \\ \alpha \epsilon^{2} &= 3 \times 10^{-9} \\ \chi^{2}/\text{dof} &= 31.2/36 \end{split}$$

pmachado@fnal.gov

Fermilab

37

 Z_D pheno is similar to dark photon case

Z_D pheno is similar to dark photon case

N pheno is novel, we are working on it

Many constraints depend on lifetime

Ex: PS 191, BEBC, NuTeV, ...

In many experiments, sensitivity depends crucially on N not decaying $\sum_{\geq 1}^{n}$ promptly

Due to parameters, our *N* always decay promptly!

Z'

ν beam axis

N pheno is novel, we are working on it

Many constraints depend on lifetime

Ex: PS 191, BEBC, NuTeV, ...

In many experiments, sensitivity depends crucially on *N* **not** decaying promptly

Due to parameters, our *N* always decay promptly!

N pheno is novel, we are working on it

Many constraints depend on lifetime

Ex: PS 191, BEBC, NuTeV, ...

In many experiments, sensitivity depends crucially on *N* **not** decaying promptly

Due to parameters, our *N* always decay promptly!

ν beam axis

Model independent heavy sterile

43 Oct/2018 P.A.N. Machado I A light dark sector to explain MiniBooNE's low energy excess - 1807.09877 / 1808.02500

P.A.N. Machado I A light dark sector to explain MiniBooNE's low energy excess - 1807.09877 / 1808.02500 Oct/2018 44

45 Oct/2018 P.A.N. Machado I A light dark sector to explain MiniBooNE's low energy excess - 1807.09877 / 1808.02500

Angular spectrum quite good!

Little dependence with m_{Z_D} , just need to satisfy dark photon constraints (> 10 MeV)

Bertuzzo et al 1807.09877

Angular spectrum quite good!

Little dependence with m_{Z_D} , just need to satisfy dark photon constraints (> 10 MeV)

Light Z_D = partially coherent scattering

Bertuzzo et al 1807.09877

Angular spectrum quite good!

Little dependence with m_{Z_D} , just need to satisfy dark photon constraints (> 10 MeV)

Light Z_D = partially coherent scattering

LHC constraints are not expected to be stringent below 1 GeV Bertuzzo et al 1807

Bertuzzo et al 1807.09877

Pheno in other neutrino experiments

MiniBooNE's signature:

Collimated e^+e^- pair in MINOS+, NOvA, or T2K is likely be tagged as v_e event

Pheno in other neutrino experiments

MiniBooNE's signature:

Collimated e^+e^- pair in MINOS+, NOvA, or T2K is likely be tagged as v_e event

General signature:

Heavy enough Z_D can decay to $\mu^+\mu^$ or $\pi^+\pi^-$ pair, much easier signature (MINOS+ is magnetized...)

Pheno in other neutrino experiments

MiniBooNE's signature:

Collimated e^+e^- pair in MINOS+, NOvA, or T2K is likely be tagged as v_e event

Heavy enough Z_D can decay to $\mu^+\mu^$ or $\pi^+\pi$ pair, much easier signature (MINOS+ is magnetized...)

Lower energy experiments (reactor and solar neutrinos) as well as electron scattering may lack energy to produce N

No baseline dependence

No baseline dependence

Almost no hadronic activity to tag interaction vertex

No baseline dependence

Almost no hadronic activity to tag interaction vertex

Decays to collimated e+e- pairs

No baseline dependence

Almost no hadronic activity to tag interaction vertex

Decays to collimated e⁺e⁻ pairs

More events due to coherence: ${}_{6}C vs {}_{18}Ar \sim 3 times more$ events for same exposure

Z

v beam axis

No baseline dependence

Almost no hadronic activity to tag interaction vertex

Decays to collimated e⁺e⁻ pairs

More events due to coherence: ${}_{6}C vs {}_{18}Ar \sim 3 times more$ events for same exposure

Hard to probe, but ...

No baseline dependence

Almost no hadronic activity to tag interaction vertex

Decays to collimated e⁺e⁻ pairs

More events due to coherence: ${}_{6}C vs {}_{18}Ar \sim 3 times more$ events for same exposure

Hard to probe, but ...

The connection to neutrino masses

Why are neutrino masses so small?

 $\overline{L}\widetilde{H}N$

Neutrino masses are very special

Just repeating the Higgs mechanism leads to RH neutrino N with no conserved quantum number

Majorana mass allowed, leading to Weinberg operator

$$\mathcal{O}_5 = \frac{c}{\Lambda} LLHH$$

Very large Λ , very high scales involved

Can neutrino masses come from light physics?

RH neutrinos:

no conserved quantum number, no SM interactions = dark sector

RH neutrinos: no conserved quantum number, no SM interactions = dark sector

Neutrino masses are a natural portal to the dark sector

RH neutrinos: no conserved quantum number, no SM interactions = dark sector

Neutrino masses are a natural portal to the dark sector

All this + new dark Z = MiniBooNE explanation!

RH neutrinos: no conserved quantum number, no SM interactions = dark sector

Neutrino masses are a natural portal to the dark sector

All this + new dark Z = MiniBooNE explanation!

Maybe a low scale dark sector can give rise to neutrino masses and explain the MiniBooNE excess

Starting point:

Gauge U(1)_D: SM has no charge, RH neutrinos N have charge +1

Starting point:

Gauge U(1)_D: SM has no charge, RH neutrinos N have charge +1

Anomaly cancellation: N' with opposite charge should be included

anomaly cancellation is a requirement to have a consistent QFT

Starting point:

Gauge U(1)_D: SM has no charge, RH neutrinos N have charge +1

Anomaly cancellation: N' with opposite charge should be included

anomaly cancellation is a requirement to have a consistent QFT

Walks and quacks like inverse seesaw

$$\mathcal{M}_{\nu} = \begin{pmatrix} 0 & m & 0 \\ m & 0 & M \\ 0 & M & \mu \end{pmatrix} \overset{\mathsf{V}}{\underset{\mathsf{N}}{\mathsf{N}}} \implies m_{\nu} = \mu \frac{m^2}{M^2}$$

Starting point:

Gauge U(1)_D: SM has no charge, RH neutrinos N have charge +1

Anomaly cancellation: N' with opposite charge should be included

anomaly cancellation is a requirement to have a consistent QFT

Walks and quacks like inverse seesaw

$$\mathcal{M}_{\nu} = \begin{pmatrix} 0 & m & 0 \\ m & 0 & M \\ 0 & M & \mu \end{pmatrix} \overset{\vee}{\underset{\mathsf{N'}}{\mathsf{N'}}} \overset{\mathbf{0}}{\underset{\mathsf{N'}}{\mathsf{N'}}} \implies m_{\nu} = \mu \frac{m^2}{M^2}$$

m and μ are forbidden by dark symmetry, they need to be generated dynamically

Fermilab

Minimum scalar content

$$\mathcal{M}_{\nu} = \begin{pmatrix} 0 & y\phi_1 & 0 \\ y\phi_1 & 0 & M \\ 0 & M & y's_2 \end{pmatrix}$$

 Φ_1 = doublet with dark charge +1 s₂ = singlet with dark charge +2

Minimum scalar content

$$\mathcal{M}_{\nu} = \begin{pmatrix} 0 & y\phi_1 & 0 \\ y\phi_1 & 0 & M \\ 0 & M & y's_2 \end{pmatrix}$$

 Φ_1 = doublet with dark charge +1 s₂ = singlet with dark charge +2

Add s_1 with charge +1 and something special happens: Φ_1 and s_2 start with no vevs, s_1 develops a vev like the Higgs

Minimum scalar content

$$\mathcal{M}_{\nu} = \begin{pmatrix} 0 & y\phi_1 & 0 \\ y\phi_1 & 0 & M \\ 0 & M & y's_2 \end{pmatrix}$$

 Φ_1 = doublet with dark charge +1 s₂ = singlet with dark charge +2

Add s_1 with charge +1 and something special happens: Φ_1 and s_2 start with no vevs, s_1 develops a vev like the Higgs

Minimum scalar content

$$\mathcal{M}_{\nu} = \begin{pmatrix} 0 & y\phi_1 & 0 \\ y\phi_1 & 0 & M \\ 0 & M & y's_2 \end{pmatrix}$$

 Φ_1 = doublet with dark charge +1 s₂ = singlet with dark charge +2

Add s_1 with charge +1 and something special happens: Φ_1 and s_2 start with no vevs, s_1 develops a vev like the Higgs

 Φ_1 and s_2 vevs are **induced**, like in type II seesaw, and thus can be naturally very small!

Consequences:

Consequences:

$$\mathcal{L}_{\nu}^{d=9} \sim y_{\nu}^{2} y_{N} \frac{\mu^{2}}{M_{H_{\mathcal{D}}}^{2}} \frac{\mu'}{M_{S_{\mathcal{D}}'}^{4}} \frac{(\overline{L^{c}}H)(H^{T}L)}{m^{2}} (S_{1}^{*}S_{1})^{2}$$

Neutrino masses from D=9 operator

Consequences:

Neutrino masses from D=9 operator

All scales involved may be below electroweak

Consequences:

Neutrino masses from D=9 operator

All scales involved may be below electroweak

Light Z_D , v-N mixing, Z_D -v-N coupling, kinetic mixing unavoidable

Consequences:

$$\mathcal{L}_{\nu}^{d=9} \sim y_{\nu}^2 y_N \frac{\mu^2}{M_{H_{\mathcal{D}}}^2} \frac{\mu'}{M_{S_{\mathcal{D}}'}^4} \frac{(\overline{L^c}H)(H^TL)}{m^2} (S_1^*S_1)^2$$

Neutrino masses from D=9 operator

All scales involved may be below electroweak

Light Z_D , v-N mixing, Z_D -v-N coupling, kinetic mixing unavoidable

We can simultaneously explain the smallness of neutrino masses dynamically and the MiniBooNE excess!

Conclusions

Novel explanation of MiniBooNE

Agreement with all EXP data

Novel, simple framework

Rich phenomenology

Deep connection to m_{ν}

Has MiniBooNE observed the mechanism behind neutrino masses???

Vacuum Expectation Values					
v (GeV)	$\omega_1 \ (MeV)$	$v_{\phi} \ (\text{MeV})$	$\omega_2 \ (MeV)$		
246	136	0.176	0.65		

Coupling Constants

λ_H	$\lambda_{H\phi} = \lambda'_{H\phi}$	λ_{HS_1}	λ_{HS_2}	
0.129	10^{-3}	10^{-3}	-10^{-3}	
$\lambda_{\phi S_1}$	$\lambda_{\phi S_2}$	λ_{S_1}	$\lambda_{S_1S_2}$	
10^{-2}	10^{-2}	2	0.01	
μ (GeV)	$\mu' ~({\rm GeV})$	α	$g_{\mathcal{D}}$	
0.15	0.01	10^{-3}	0.22	

$$V = -m_H^2(H^{\dagger}H) + m_{\phi}^2(\phi^{\dagger}\phi) - m_1^2 S_1^* S_1 + m_2^2 S_2^* S_2$$
$$- \left[\frac{\mu}{2} S_1(\phi^{\dagger}H) + \frac{\mu'}{2} S_1^2 S_2^* + \frac{\alpha}{2} (H^{\dagger}\phi) S_1 S_2^* + \text{h.c.}\right]$$
$$+ \lambda'_{H\phi} \phi^{\dagger} H H^{\dagger} \phi + \sum_{\varphi}^{\{H,\phi,S_1,S_2\}} \lambda_{\varphi} (\varphi^{\dagger}\varphi)^2$$
$$+ \sum_{\varphi < \varphi'}^{\{H,\phi,S_1,S_2\}} \lambda_{\varphi\varphi'} (\varphi^{\dagger}\varphi) (\varphi'^{\dagger}\varphi') .$$

Bare Masses

$m_{\phi} \; (\text{GeV})$	$m_2 (\text{GeV})$	
100	5.51	

$$v_{\phi} \simeq \frac{1}{8\sqrt{2}} \left(\frac{\alpha \mu' v \omega_1^3}{M_{S_{\mathcal{D}}}^2 M_{H_{\mathcal{D}}}^2} + 4 \frac{\mu \omega_1 v}{M_{H_{\mathcal{D}}}^2} \right) \quad \omega_2 \simeq \frac{1}{8\sqrt{2}} \left(\frac{\alpha \mu v^2 \omega_1^2}{M_{S_{\mathcal{D}}}^2 M_{H_{\mathcal{D}}}^2} + 4 \frac{\mu' \omega_1^2}{M_{S_{\mathcal{D}}'}^2} \right)$$

Masses of the Physical Fields								
$m_{h_{\rm SM}}$ (GeV)	$m_{H_{\mathcal{D}}}$ (GeV)	$m_{S_{\mathcal{D}}}$ (MeV)	$m_{S'_{\mathcal{D}}}$ (MeV)	$m_{H_{\mathcal{D}}^{\pm}}$ (GeV)	$m_{A_{\mathcal{D}}}$ (GeV)	$m_{a_{\mathcal{D}}}$ (MeV)	$m_{Z_{\mathcal{D}}}$ (MeV)	$m_{N_{\mathcal{D}}}$ (MeV)
125	100	272	320	100	100	272	30	150
Mixing between the Fields								
$ heta_{H\phi}$	$ heta_{HS_1}$	$ heta_{HS_2}$	$ heta_{\phi S_1}$	$ heta_{\phi S_2}$	$\theta_{S_1S_2}$	$e\epsilon$	ϵ'	$ U_{\alpha N} ^2$
1.3×10^{-6}	2.1×10^{-6}	10^{-8}	1.2×10^{-3}	8.3×10^{-7}	3.4×10^{-2}	2×10^{-4}	3.6×10^{-14}	$\mathcal{O}(10^{-6})$

 $M_Z > M_N$

Ballett et al 1808.02915

Rich pheno! Lots of potential!

Fermilab pmachado@fnal.gov