

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Current and Future Long Baseline Neutrino Experiments

Peter Shanahan Neutrino Summer Student Lecture Series 20 July 2015

Neutrino Mixing

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

"Atmospheric"
 ν_{μ} disappearance - SK

$$\begin{pmatrix} \theta_{13} \text{ measured in} \\ \text{reactors - Daya Bay,} \\ \text{Reno} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

Oscillation probability, in the limit of 2 flavors α and β , mixed by angle θ , mass-squared difference Δm^2 : $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2(2\theta) \sin^2(\frac{\Delta M^2 L}{4E}) \xrightarrow{\text{Neutrino energy E}}{\text{Baseline L}}$

SuperKamiokande told us *early on*: v_{μ} must be oscillation mainly to v_{τ}

‡Fermilab

Neutrino Oscillations

- Important questions can be addressed with neutrino oscillations
 - What is the pattern of neutrino mass mixing, and what does it tell us when compared to that of quarks?
 - Large mixing, or small? Answered: Large!
 - What is the neutrino mass ordering?
 - $\theta_{23} > 45^{\circ} \text{ or } \theta_{23} < 45^{\circ}?$
 - Is there CP violation in the lepton sector? At what level?
 - Is this why matter >>> antimatter, and therefore why we exist?
- The rich phenomenology of long baseline/appearance has a critical role in answering these questions

7/20/15

🛟 Fermilab

Why Long Baseline?

- Thresholds
 - 735m baseline would be a lot cheaper than 735 km
 - All other things equal, $\phi(m)/\phi(km)=10^6$
 - However, for atmospheric $\Delta m^2 \sim 2.5 \times 10^{-3} \text{ eV}^2$, Oscillation max at L=735m is at E=1.47 MeV
 - Well below v_{μ} CC quasi-elastic threshold ~100 MeV!
- Sensitivity to neutrino Mass Ordering
 - via MSW (Matter) effect
 - Effectively a modification of some oscillation terms of form P→P₁(1 ± 2E/E_R)

$$E_R = rac{\Delta m_{13}^2}{2\sqrt{2}G_F
ho_e} pprox$$
 11 GeV for Earth's Crust

− Longer baseline → larger effect

e

 \mathcal{V}_{e}

🚰 Fermilab

Challenges of Long Baseline Experiments

- Event Rate
 - N ~ ϕ M σ
 - − Flux → High Intensity Beams
 - − Mass → Massive detectors
- Backgrounds
 - − Looking for small effects → Detector technologies, etc
- Uncertainties in
 - Flux
 - Cross Sections
 - Detector effects

K2K – The First Long Baseline Experiment

Accelerator Long Baseline

• Soudan Lab website c. 1997

Preliminary data taken at Soudan confirm results from two other detectors indicating a shortage of muon-type neutrinos, supporting the idea that neutrinos do have mass.

This possibility is so important that further experiments on neutrino mass are planned at several laboratories worldwide. The proposed <u>MINOS</u> (Main Injector Neutrino Oscillation Search) experiment would generate neutrinos at Fermi National Accelerator Laboratory, about 70 km west of Chicago. These neutrinos would then be directed north northwest about 730 km through the earth to the laboratory at Soudan. A "near" detector located at Fermilab would be used to measure the relative numbers of the three types of neutrinos near the production point. Both a new 10,000 ton MINOS detector and the existing <u>Soudan 2 detector</u> would be used to measure the same ratios at the remote location. A change in the proportions of electron, muon and tau- type neutrinos between the near and far laboratories would indicate that neutrinos have mass. The magnitude of the neutrino mass and the strength of the overlap among neutrino types could then be measured using the same instrumentation. Since neutrinos almost never interact with matter, neutrino beams have no influence on people, animals and plants.

If the MINOS experiment is approved, the new detector would be built in a new laboratory located about 50 m east of the current Soudan laboratory. The MINOS experiment would likely begin data collection about the year 2000, thus extending the usefulness of the Soudan laboratory for at least another decade.

MINOS

- Focus on ν_μ disappearance
 And ν_μ→ν_e
- Original user of NuMI beam
- Magnetized Fe-Plastic Scintillator tracking calorimeters
 - Near (1kt) and Far (5kt) detectors separated by 734 km

9

Neutrino Event Signatures in MINOS

NC Event

Only a (diffuse) shower from hadronic recoil

Ve CC Event

 v_e CC: Electromagnetic shower, shorter with higher pulse heights

MINOS

Going beyond $\Delta m^2 vs sin^2(2\theta_{23})$ in v_{μ} Disappearance?

• Full 3-flavor survival probability in vacuum

$$P(v_{\mu} \rightarrow v_{\mu}) = 1 - 4(s_{12}^{2}c_{23}^{2} + s_{13}^{2}s_{23}^{2}c_{12}^{2} + 2s_{12}s_{13}s_{23}c_{12}c_{23}cos\delta)s_{23}^{2}c_{13}^{2}sin^{2}\phi_{31} - 4(c_{12}^{2}c_{23}^{2} + s_{13}^{2}s_{23}^{2}s_{12}^{2} - 2s_{12}s_{13}s_{23}c_{12}c_{23}cos\delta)s_{23}^{2}c_{13}^{2}sin^{2}\phi_{32} - 4(s_{12}^{2}c_{23}^{2} + s_{13}^{2}s_{23}^{2}c_{12}^{2} + 2s_{12}s_{13}s_{23}c_{12}c_{23}cos\delta) - x(c_{12}^{2}c_{23}^{2} + s_{13}^{2}s_{23}^{2}s_{12}^{2} - 2s_{12}s_{13}s_{23}c_{12}c_{23}cos\delta)sin^{2}\phi_{21}$$

 $\phi_{ij} = \Delta m^2_{ij} L/4E$

$P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - 4(s_{12}^{2}c_{23}^{2} + s_{13}^{2}s_{23}^{2}c_{12}^{2} + 2s_{12}s_{13}s_{23}c_{12}c_{23}cos\delta)s_{23}^{2}c_{13}^{2}s_{13}^{2}\phi_{31} - 4(c_{12}^{2}c_{23}^{2} + s_{13}^{2}s_{23}^{2}s_{12}^{2} - 2s_{12}s_{13}s_{23}c_{12}c_{23}cos\delta)s_{23}^{2}c_{13}^{2}s_{13}^{2}\phi_{32}$

To within <1% near the atmospheric oscillation maximum, given the value of Δm_{21}^2

To within ~ %

$P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - 4(s_{12}^{2}c_{23}^{2} + s_{13}^{2}s_{23}^{2}c_{12}^{2} + c_{12}^{2}c_{23}^{2} + s_{13}^{2}s_{23}^{2}s_{12}^{2})s_{23}^{2}c_{13}^{2}s_{13}^{2}s_{4tm}^{2}$

P(
$$v_{\mu}$$
 → v_{μ}) ≈
1 - 4(c_{23}^{2} + $s_{13}^{2}s_{23}^{2}$) $s_{23}^{2}c_{13}^{2}sin^{2}\phi_{Atm}$

For $\theta_{23}\text{=}45^{\circ}$ and $\theta_{13} \sim 9^{\circ}$

 \approx 1-(1+ 0.025)sin²(2 θ_{23})sin² φ_{Atm}

I.e., ν_{μ} survival probability has 2 flavor form to ~few %

% scale precision measurements needed for to see 3-flavor effects

Fermilab

7/19/15

16 Presenter | Presentation Title

MINOS Joint Fit: beam and atmospheric $v_{\mu}^{(-)}$, beam v_{e}

• As MINOS uncertainty on Δm^2_{Atm} approached Δm^2_{21} , 3-flavor fit became possible/necessary

Phys. Rev. Lett. 112, 191801 (2014)

🛟 Fermilab

v_{τ} Appearance – A BIG Challenge!

- CC τ production threshold = 3.45 GeV
 - If you want σ =1x10⁻³⁸cm², you would need E_v=7 GeV
- Osc Max for Atmospheric Scale at 7 GeV occurs at 3600 km!

Example 3600 km: Fermilab to San Jose, Costa Rica

J. A. Formaggio, G. P. Zeller

Also, τ are very difficult to detect

Opera – v_{τ} **Appearance**

Long Baseline v_e Appearance

- What can v_e appearance do for us?
 - $sin^2(2\theta_{13})$ we've known that since 2011 thanks to Daya Bay
 - Exploration of effects on the scale of $sin^2(2\theta_{13})$
 - Not diluted by $\sin^2(2\theta_{23})$
 - Neutrino Mass Ordering via Matter Effect
 - CP Violation
 - "Disappearance = total time evolution operator = mass = CP invariant by CPT symmetry" → Cannot detect CP violation in disappearance, even comparing v and v
 - θ_{23} Octant
 - If not maximal, is $\theta_{23} < 45^{\circ} \text{ or } > 45^{\circ}$?

Long Baseline v_e Appearance Probability

•
$$P(v_{\mu} \rightarrow v_{e}) \cong P_{Atm} + P_{sin\delta} + P_{cos\delta} + P_{Sol}$$

 $P_{Atm} = sin^{2}\theta_{23} sin^{2}2\theta_{13} \frac{sin^{2}[(A-1)\Delta]}{(A-1)^{2}}$
 $P_{sol} = \alpha^{2}cos^{2}\theta_{23} sin^{2}2\theta_{12} \frac{sin^{2}(A\Delta)}{A^{2}}$
 $P_{sin\delta} = \alpha 8J_{CP}sin\Delta sin(A\Delta) \frac{sin[(1-A)\Delta]}{A(1-A)}$
 $P_{cos\delta} = \alpha 8J_{CP}cot\delta_{CP}cos\Delta sin(A\Delta) \frac{sin[(1-A)\Delta]}{A(1-A)}$

 $\Delta = \Delta m_{31}^{2} L/4E \qquad A = \sqrt{2}G_{F}N_{e}2E/\Delta m_{31}^{2} \qquad \alpha = I\Delta m_{21}^{2}I/I\Delta m_{31}^{2}I$

‡Fermilab

7/19/15

$$\label{eq:constant} \begin{split} J_{CP}{=}sin2\theta_{12}sin2\theta_{13}sin2\theta_{23}cos\theta_{13}sin\delta_{CP}/8 \approx 0.03~\delta_{CP}\\ Jarlskog Invariant \end{split}$$

21 Presenter | Presentation Title

Principle of Measurement

7/19/15

Principle of Measurement

7/19/15

Principle of Measurement

 θ_{23} Octant From P_{atm}~ sin²(θ_{23})

‡ Fermilab

7/19/15

24 Presenter I Presentation Title

Design Requirements for ν_{e} Appearance

- High(er) Beam Power & Large(r) Detectors
 10+ kt scale
- Good Electron Identification
 - Technology for detecting electromagnetic showers
- Background Suppression
 - Detector Technology, possibly Off-Axis Beam
- $v \text{ and } \overline{v} \text{ bar modes}$
 - Reverse horn current to focus p^2 , k² for u
- Baseline for Matter Effect
 - Really a matter of energy/resonance energy: $E_R \approx 11 \text{ GeV}$
- Measurement of backgrounds and unoscillated rate
 - Near Detector

Such an experiment will also do v_{μ} disappearance very well!

Off-Axis

Place Detector Off-axis for narrow-band beam

🛟 Fermilab

7/19/15

50 kt Far Detector

750 kW design beam power 2.5° off-axis angle

Super-Kamiokande IV

T2K Beam Run 430013 Spill 4033842 Run 69739 Sub 201 Event 48168772 12-05-30:05:03:02 T2K beam dt = 2463.6 ns Inner: 2350 hits, 7009 pe Outer: 1 hits, 0 pe Trigger: 0x80000007 D_wall: 644.8 cm e-like, p = 690.1 MeV/c

Charge (pe)

Super-Kamiokande IV

T2K Beam Run 32 Spill 294378 Run 66692 Sub 67 Event 15931918 10-04-18:13:57:00 T2K beam dt = 3054.5 ns Inner: 1414 hits, 2494 pe Outer: 7 hits, 6 pe Trigger: 0x8000007 D_wall: 1060.9 cm 2 e-like rings: mass = 140.4 MeV/c^2

Charge (pe)

T2K v_e Appearance

 4.92 ± 0.55 background **28 events observed** 7.3σ observation of oscillations

21.6 events expected $sin^22\theta_{13}=0.1$ $\delta_{CP}=0$ $sin^2\theta_{23}=0.5$

7/20/15

‡Fermilab

T2K Compared to Reactor θ_{13}

T2K sin² θ_{13} result vs δ_{CP} sin² θ_{23} and Δm_{23}^2 varied as allowed by T2K disappearance results

Slight favoring of Normal Ordering, δ_{CP} =- $\pi/2$

Note! $\delta_{CP}=3\pi/2$ in NOvA convention

T2K Disappearance

T2K Joint v_{μ} Disappearance / v_{e} Appearance results

T2K best fits: (negligible) preference for Normal Ordering $sin^2\theta_{23}=0.524^{+0.057}$ (NO) $sin^2\theta_{23}=0.523^{+0.055}$ (IO)

‡Fermilab

7/20/15

34 Presenter I Presentation Title

NOvA

- v_{μ} to v_{e} , \overline{v}_{μ} to \overline{v}_{e}
 - Neutrino Mass Hierarchy
 - Start to explore leptonic CP violation
- θ_{23} octant
- v_{μ} disappearance
 - Precision Δm^2 , θ_{23} measurement
- Design
 - High power NuMI beam 700 kW expected 2016
 - Low-Z tracking calorimeters
 - Excellent electron reconstruction, muon energy resolution
 - Off-axis location
 - Suppress neutral current interactions at higher energies
 - 14 kt far detector, 293 ton near detector, 810 km baseline

‡Fermilab

Location

- 14 mrad (11km) off NuMI Beam Axis
 - Neutrino spectrum peaks around 1st oscillation max
 - High energy tail suppressed: reduces Neutral Current π⁰ background
 - NC "feed down" in energy due to energy of outgoing neutrino
- As far as possible from Fermilab for maximum matter effect – Mass Ordering
 - 810 km

7/19/15

🚰 Fermilab

NOvA Detector Technology

Event Topologies

NOvA Detectors

 192 planes, plus a muon catcher with 10 planes of iron

NOvA Far Detector ν_{μ} Candidate

7/19/15

NOvA Near Detector – Typical NuMI Spill

7/19/15

NOvA Measurement

NOvA Wrong Sign Contamination

7/20/15

CP Violation – NOvA

7/20/15

θ_{23} Octant - NOvA

7/19/15

NOvA Disappearance

6 Nominal Design Years

7/20/15

NOvA Appearance Analysis

LID: Shower-shape likelihood-based classifier

NOvA Status

- NOvA is aiming for first results this summer
- First data set: early days of Far Detector construction through spring 2015
 - Rates shown for ~1/3 nominal design year. Actual expected ~1/2 nominal design year (Nominal year=6x10²⁰ POT x 14 kt)
 - $-v_e$ appearance

	Osc. ν _e CC Signal	Total BG	ν_{μ} CC	NC	Beam v_e	Cosmic Background
LID	3.25	1.02	0.05	0.32	0.33	0.29
LEM	3.48	1.14	0.05	0.41	0.36	0.29

Assuming δ_{CP} =0, no matter effect, sin²(2 θ_{13})=0.095 Maximal 23 mixing, Unknowns can change signal by +/- 60%

 $-v_{\mu}$ disappearance

		Total BG	Cosmic Background	NC Background
Final Selection	23.7	1.6	0.3	1.3
				1

Next Generation – DUNE/LBNF

- Goals
 - Precision study of $\nu_\mu {\boldsymbol{\rightarrow}} \nu_e$, $\overline{\nu}_\mu {\boldsymbol{\rightarrow}} \overline{\nu}_e$
 - Measure δ_{CP}
 - Determine the $\boldsymbol{\nu}$ Mass Ordering
 - Precision test of 3-flavor
 mixing in appearance and
 disappearance with v, v
 - Measure θ_{23} , including the octant
- 1300 km baseline
 - Fermilab to Sanford
 Underground Lab
- Liquid Argon TPC Detector
- Wide-band, megawatt beam
 - Similar to NuMI design

DUNE

- Broad-band beam
 - Disentangle MO and δ_{CP} effects
 - Longer baseline
 - Use shape of spectra, not just rates

DUNE v, disappearance

‡Fermilab

 $\begin{array}{l} \text{DUNE}\,\overline{\nu}_e \text{ appearance} \\ \text{150 kt-MW-yr}\,\,\overline{\nu} \text{ mode} \\ \text{Normal MH}, \, \delta_{\text{CP}} = 0 \end{array}$

35r

30

800

120₀

Liquid Argon Time Projection Chambers

Argoneut event display from Jonathan Asaadi's talk in this series Ionization charge drifts over meters with speed $O(mm/\mu s)$ ~4 mm (wire spacing) x <1mm (drift time) sampling is typical for liquid argon TPCs

7/20/15

Dune Far Detector

- Liquid Argon TPCs 4850' (1470 m) underground at Sanford
 - 4 independent modules of 10 kt each
 - Take advantage of possible technology improvements without having to wait to start detector construction

7/19/15

Possible Alternative Design – Dual Phase

- Amplify & detect signal charge in gaseous Ar above liquid surface
- Allows finer readout wire pitch, lower energy thresholds, better pattern recognition *L. Fields, Users*

- L. Fields, Users' Meeting Talk
- Possible choice beyond 1st 10 kt module
 - Development and evaluation at CERN WA105

Dune Sensitivities

• 40 kt x 1.2 MW – 48 kt-MW-yr per vear

75% CP Violation Sensitivity

‡Fermilab

Dune Schedule

Indicative schedule

Mark Thompson, June PAC meeting

7/19/15

58 Presenter | Presentation Title

Conclusions

- We are ~15 years into the era of Long Baseline Experiments
- These are challenging measurements
 - A long-term, programmatic view has served is well
- A huge amount has been learned
 - Often by making experiments reach well beyond their design
- The current and next generation experiments stand to answer some of the most important questions in physics will