

GENIE v3.0.0 Steve Dytman, Univ. of Pittsburgh Major physics release

1 November, 2018

- collect recent models + new models
- new structure for simpler simulation
- new tuning framework/results
- many recent plots, some same as NUINT
- look ahead to v3.2, v4.0

GENIE

- > Tries to be event generator for any experiment for vA beam 10 MeV-10 TeV
- Used by almost all experiments, especially FNAL
 - Geometry
 - Reweighting systematic errors
 - Physics models
- Service to the HEP community
- Needs have greatly increased as experiments become more advanced

2

GENIE - http://www.genie-mc.org

GENIE Collaboration

Luis Alvarez Ruso⁸, Costas Andreopoulos^{2,5}, Christopher Barry², Francis Bench², Steve Dennis², Steve Dytman³, Hugh Gallagher⁷, Steven Gardiner¹, Walter Giele¹, Robert Hatcher¹, Libo Jiang³, Rhiannon Jones², Igor Kakorin⁴, Konstantin Kuzmin⁴, Anselmo Meregaglia⁶, Donna Naples³, Vadim Naumov⁴ Gabriel Perdue¹, Marco Roda², Jeremy Wolcott⁷, Júlia Tena Vidal², Julia Yarba¹

[Faculty, Postdocs, PhD students]

1 - Fermi National Accelerator Laboratory, 2 - University of Liverpool, 3 - University of Pittsburgh, 4 - JINR Dubna,

5 - STFC Rutherford Appleton Laboratory, 6 - CENBG Université de Bordeaux, 7 - Tufts University, 8 - Valencia University

Core GENIE mission - from GENIE by-law

Framework "... provide a state-of-the-art neutrino MC generator for the world experimental neutrino community ..."

- Universality "... simulate all processes for all neutrino species and nuclear targets, from MeV to PeV energy scales ..."
 - Global fit "... perform global fits to neutrino, charged-lepton and hadron scattering data and provide global neutrino interaction model tunes ..."

GENIE contributors

- GENIE has grown as the field grows (required!!) since 2013
 - New postdocs all 5 now in the group work at FNAL (10-50% effort)
 - New group at FNAL joins core groups in US and UK
 - New contributing groups Dubna (Moscow)
 - New contributors theorists more willing to work with us, experiments more willing to provide people to work with us
 - **33 contributors to code since v2.8 (see backup)**
 - Large enough? stable? Community decides
- Developers Workshop (FNAL, March, 2015) brings new models – Valencia MEC, SingleK...
- FNAL group has provided validation framework
- Liverpool group has built tuning framework (private)
- Better physics in a more professional environment

Comparison of generator models - 2017

Model/generator	GENIE	NuWro	NEUT
QE	Lwlyn-Smith Nieves, Eff MA	Lwlyn-Smith RPA	Lwlyn-Smith Eff RPA
Nuclear model	RFG , LFG, Effective spectral function	RFG, LFG, spectral function	RFG, LFG, spectral function
MEC	Valencia Empirical	Valencia Marteau	Valencia
Delta model	<mark>Rein-Sehgal (updated)</mark> Berger-Sehgal	Home-grown, great	Rein-Sehgal (update) Berger-Sehgal
Coherent	Rein-Sehgal(corrected) Berger-Sehgal	Rein-Sehgal Berger-Sehgal	Rein-Sehgal Berger-Sehgal
FSI	Schematic Cascade (med corr)	Cascade(med corr)	Cascade(med corr)

- Differences more in detail than fundamental (physics)
- GENIE has larger goals, therefore slower

Event generator world

- NEUT, NuWro, and GENIE are all significant contributors
- Physics models now very similar similar upgrades
- Reviewed in Tensions wkshp paper Phys Repts (2018)
 - Comparison with MiniBooNE CC0 π data below
 - GENIE v2.12.0alt is in v3.0 as G18_10a

GENIE v3.0.0

- Collects models into Comprehensive Model Configurations (CMC), I prefer to call them model sets
 - Most compatible physics (too many energy scales to be truly compatible)
 - Options to match energy scale of each experiment
 - Models are as good as data, theory contained
 - Not done, new contributions essential (data, *tunes*, theory)
- Presents new tunes
 - Only deuterium data for now, more later
 - Compatible with each model set (e.g. resonant model)
 - Sometimes expanded resonance region (larger W_{cut})
 - Provide full error analysis for each

Model sets

- Historical default (not supported)
 - **G00_00a** with hA, no MEC, **G00_00b** with empirical MEC
 - RFG, Llewyllen-Smith, Rein-Sehgal (not original)
- Improved historical default
 - **G18_01a/b** with hA2018/hN2018. better basic (e.g. coherent)
 - RFG, Llewyllen-Smith, Rein-Sehgal (not original), empirical MEC
- Improved pion production
 - **G18_02a/b** with hA2018/hN2018
 - Includes Berger-Sehgal resonance and coherent, updated axial FF
- Improved quasielastic/ nuclear model/ axial FF
 - All have Local Fermi Gas, Nieves QE, Valencia MEC
 - G18_10a/b has dipole FF, G18_10i/j has z-expansion FF

Getting code

- After many successful years on HEPForge, we migrate
- Public versions now on GitHub, can get .zip or .tar.gz file for any release at <u>https://github.com/GENIE-MC/zzz</u>
 - > zzz=Generator/releases to get code
 - > zzz=Reweight to get code
 - zzz=PhysicsAndUserManual to get instructions (private temporarily)
 - Only requirement is that you are registered with GitHub
 - <u>http://genie-mc.org</u> is largely updated, has most recent user manual
- Tunes will be available soon
- Comparisons results will be available soon
- Long-time users will see a re-organization of files, hopefully improved

Electron scattering - vector int, nuclear model

- Significant advances in v3.0
 - Bug fixes, better 2p2h, resonance models
- Comparisons with GENIE in elec scat mode G18_10i
 - \blacktriangleright QE has no medium corrections, Nieves model only for νA
- Good agreement, but more tuning required

Final State Interaction (FSI) advances

- hA2018 is latest version of schematic model
- Recent emphasis on medium corr, low energy nucleons
- hN2018 is new intranuclear cascade (INC) model with same nuclear medium corrections (π, N) as NuWro

Summary of models

- Total of 10 model sets per deuterium tune
- Each callable via 1 new switch --tune G18 10a 00 000
 - year model set param set data set
- Splines must be compatible with chosen data set
- For low energy experiments (dominated by QE) G18_02x (LS/emp MEC/RFG) vs. G18_10x (Valencia/LFG) interesting
 - Valencia QE has very good description of MiniBooNE QE
- For higher energy experiments (dominated by pion production) G18_01a (RS/hA) vs. G18_02b (BS/hN) interesting
 - Rein-Sehgal/Berger-Sehgal have updated resonance parameters
 - Berger-Sehgal coherent has improved pion scattering model

Additional new models now in v3.0.0

- Single K⁺ production
- Diffractive pion production with neutrinos
- Boosted Dark Matter (low energy exotic particle)
- nn annihilation
- Quasielastic hyperon production (Pais)
- Alvarez-Ruso coherent model (low energy only)
- Smith-Moniz quasielastic model
- Effective-Ma QE model
- Effective spectral function (QE+2p2h)

CC ν_{μ} Quasielastic

MiniBooNE CCO π (2010) need for 2p2h (MEC)

- CC0 π has become standard needs true QE, pion abs, and 2p2h
- MiniBooNE published both true CCQE and CC0 π , we use latter
- GENIE has had these for a few years, 2p2h increases cross section at all angles. Here, G00_00b is a little better than G00_00a.

Modern calculation has better agreement

- G18_10j has full Valencia CCQE QE with RPA/Coulomb, 2p2h with local Fermi gas (LFG) nuclear model
- Compared with G18_02b Lwlyn-Smith, Empirical MEC

GENIE v3.0.0

More detail for MiniBooNE CCO π

- Left compare role of FSI (hA2018 vs. hN2018) with LS
 - Angular distribution for low T_{μ} is not right (data or theory?)
- Right plot shows LS+Empirical MEC vs. Nieves QE+MEC
 - Looks like problem was with theory not designed for low energy

Τ2Κ ССОπ (2015)

- Well understood kinematics, systematic errors
- 02b (LS/hN) vs. 10j (Nieves/hN)
- > 02b has better overall χ^2 , 159 vs. 332 for 67 dof

CC ν_{μ} Resonances

MiniBooNE v_{μ} CC1 π^+ <E_v>~1 GeV

- Show 2 of many distributions
- **01a** (R-S, hA) vs. **02a** (B-S, hA) vs. **02b** (B-S, hN)
- 02b most advanced theory, gets details best

MINERVA v_{μ} CC1 π^{\pm} <E_v>3.6 GeV

- Energy dependence has been tricky for many (NuWro)
- Indeed, all calculations are larger than data
- 02b has different shape than others

CC ν_{μ} Coherent pion

GENIE v3.0.0

MINERvA v coherent (2015)

- π^+ energy and angle with $\langle E_v \rangle = 4.0 \text{ GeV}$
- Compares Berger-Sehgal (G18_02a) with updated Rein-Sehgal (G18_01a)

CC ν_{μ} Inclusive

MINERVA CC Inclusive (2016) [NUISANCE]

- ▶ q0 (v) dependence in 8 q3 ($|\vec{q}|$) bins 0.2→0.3, 0.5→0.6 GeV/c
- If single beam energy, would see separate QE and Δ peaks
- "Evidence for enhanced 2p2h", no obvious need seen here
- G18_10j (Valencia QE, Berger-Sehgal) has best agreement

Tuning details - Professor

- Professor is used in many places, e.g. Pythia, for *multiparameter tuning* (~20 params, improved use of *Minuit*)
- Uses brute force, build solutions for all variations of selected parameter within given bounds on a finite grid
- Find chisquare minima in each parameter
- Use stored solutions to estimate errors on each parameter
- Can report full correlation matrix
- Fit parameters not connected to reweighting in our version
- Can include priors, nuisance parameters
- Nuisance remains an excellent public option

Details of deuterium tune (e.g. G18_02a)

- Use only $v \& \overline{v}$ deuterium data, including Wilkinson et al. improvements (BNL now close to ANL)
- Goal is to maintain CCQE fit and emphasize CCRES exclusive data

Parameter	Default value	Best tune value		
M_A^{RES} [GeV/c ²]	1.12	1.065 ± 0.025		
M_{Δ}^{QE} [GeV/c ²]	0.99	0.961 ± 0.031		
R-vp-m2	0.1	0.008 ± 0.00		
R-vp-m3	1	0.788 ± 0.20	Multiplicity parameters,	
R-vn-m2	0.3	0.128 ± 0.021	e,g, R-vp-m2 is for vp, 2 pions	
R-vn-m3	1	2.115 ± 0.57		
RES-XSecScale	1	0.878 ± 0.031	- Relative normalization, RES vs. NONRES	
DIS-XSecScale	1.032	1.019 ± 0.055 -		
W_{cut} [GeV]	1.7	1.928 ± 0.091	Boundary – RES vs. DIS	

Priors applied

 $M_A^{QE} = 0.89 \pm 0.044 \text{ GeV/c}^2$, fit to just BEBC data [Eur. Phys. J. C (2008) 54] $M_A^{RES} = 1.12 \pm 0.03 \text{ GeV/c}^2$, [ArXiv:0606184] DIS-XSecScale= $1 \pm 0.05 \rightarrow$ Motivated by DIS high energy cross section values

Correlation matrix

- Well understood
- Correlations mainly come from cross-section scale (e.g. RES-CC-XsecScale) vs. detailed param linked to scale (e.g. RES-Ma)

Compare previous and new fits - inclusive

- Data has excellent PID, poor statistics, uncertain normalization
- Poor underpinning for an entire field

CCQE detail

Representation of the CCQE data is unchanged

Compare previous and new fits - exclusive

- 1π production decreases (due to smaller BNL in part), 2π production increases
- > Overall, result is v_{μ} CCQE few% smaller, CC π ~30% smaller

Results - O2a vs. O2a_tune

- MiniBooNE CC0 π (2010) LS+Empirical MEC
- Very little difference between tuned and untuned

• $\chi^2 = 71.5$ (untuned), 75 (tuned) 78 dof for full data set

Results - O2a vs. O2a_tune

- MiniBooNE CC0 π (\overline{v}_{μ}) (2013)
- Good agreement with LS!
 - $\chi^2 = 352$ (untuned), 374 (tuned) 137 dof for full data set

Τ2Κ ССОπ (2015)

- μ^{-} momentum at most backward and most forward angles
- Very little difference between tuned and untuned
- Moderate agreement $\chi^2 = 179$ (untuned), 183 (tuned)

Results - O2a vs. O2a_tune

- MiniBooNE v_{μ} CC1 π^+
- New tune has poorer agreement in magnitude, shape ok

Results - O2a vs. O2a_tune

- MINERVA v_{μ} CC1 π^{\pm}
- New tune produces correct magnitude
- Angle still not easy to match

observations

- Tuned 02a produces lower pion production cross sections than untuned 02a
 - 02a in better agreement with MiniBooNE CC1 π^+
 - 02a_tune in better agreement with MINERvA CC1 π^{\pm}
 - Tension is independent of model, experiments must make choices
- 10a/b/i/j series all have good agreement with MiniBooNE data, using new deuterium tune reduces that agreement
 - best choice for BNB experiments
- \blacktriangleright Existing neutrino data mostly ν_{μ} CC
 - Many kinds of experiment, mostly C target (MINERvA Fe, Pb)
 - Except MiniBooNE, data has low statistics so far
 - Modern experiments have good error treatment, not MiniBooNE
- New, improved data is essential for GENIE progress

Role of experiments

- Producing useful cross section results signal!
- GENIE collaboration is no longer tiny, but still small compared to the needs of the community
- A constructive relationship with the experiments has always been desired, but doesn't happen naturally
- FNAL has a large user base, I am open to discussion
- We will do what we can, but support from experiments remains crucial
 - Testing
 - Help constructing models
 - Help upgrading error estimates

Model issues - reweighting

- Reweighting is now separate from Generator because reweighting task is based on model changes in Generator
- Short term we realize experiments depend heavily on reweighting, keep us aware of your needs.
- Longer term improvements (with v4)
 - Fully support all tunes
 - Report tuned parameter values with covariance matrix
 - Reconstruct model sets in each tune as needed
 - Include tune parameters that don't have to be reweightable quantities (a feature of GENIE implementation of Professor)

Model issues - low neutrino energies

- (e,e') at beam energies <~300 MeV</p>
 - No electron scattering model for Valencia, use LS+Empirical 2p2h
 - Physics emphasis changes (coherent, giant resonances, decay γ 's)
- ▶ FSI for proton, neutron KE<~80 MeV
 - Still more suppression needed, shape?

v3.2 models ready to be part of a release

- Improve Delta [P₃₃(1232)] simulation
 - Upgrade decay angular distributions (NuWro)
 - Later include alternate \triangle models
- Coherent rho production
- Improve FSI
 - ► INCL++ as alternate FSI model
 - GEANT4 as alternate FSI model
 - Later Update existing FSI or use alternate model
- Use links to (e,e') most advantageously
 - Resonance vector decay form factors from MAID
 - Radiative effects on all final state electrons?
 - Later add tuned axial form factor, better nonresonant
 - ▶ Improved empirical MEC model first (e,e'), then vA *later*
- Correlated Fermi Gas (CFG) nuclear model
- Pythia8 replacing Pythia6?

summary

• GENIE v3.0.0 is ready for users

Many thanks to all who contributed! (see backup)

- LarSoft integration started in summer, thanks to them!
- Reweight package still being modified for compatibility, expected soon
- We are already finding new errors, users should tell us what they learn

New structure makes introduction of new tunes easier

- Experiments can put in their own tunes, easy if based on v3, harder if based on older releases
- GENIE goal supply nuclear tunes in roughly 1 year (v4)

New models should be included

- Recent theory efforts encouraging
- New models backed up, waiting for v3.2 (few months?)

Future

- v4 promises to have nuclear tunes, much more realistic estimated errors
- More rapid releases?
- Better physics models vs. better tunes will make interesting times

GENIE v2.10.0 - new physics models

- Bodek-Christy-Coopersmith eff. spectral function (EPJC 74:3091, 2014).
 B. Coopersmith and A. Bodek (Rochester)
- Very-High Energy extension (up to 5 TeV, working towards PeV scales)
 K. Hoshina (Wisconsin)
- Inclusive η production.
 J. Liu (W&M)
- Berger-Sehgal resonance model (PRD 76, 113004, 2007)
 J. Nowak (Lancaster) and S. Dytman (Pitt)
- Kuzmin-Lyubushkin-Naumov resonance model (MPL A19, 2815, 2004) J. Nowak (Lancaster), I. Kakorin (JINR) and S. Dytman (Pitt)
- Improved INTRANUKE/hA FSI model.
 S. Dytman and N. Geary (Pitt)
- Single K model by Alam, Simo, Athar, and Vacas (PRD 82, 033001, 2010).
 C. Marshall (Rochester) and M. Nirkko (Bern)

GENIE v2.12.0 - new physics models

- Bhattacharya, Hill, and Paz QE Z expansion model (PRD 84:073006)
 A. Meyer (Chicago)
- Local Fermi Gas & Nieves-Amaro-Valverde CCQE with RPA (Phys. Rev. C70, 055503 (2004); Phys. Rev. C72:019902, 2005)
 J. Johnston and S. Dytman (Pitt)
- Updates to the GENIE hown-grown empirical 2p-2h model S.Dytman (Pitt)
- Valencia 2p-2h model (Phys.Rev. D88:113007, 2013)
 J. Schwehr (CSU), D.Cherdack (CSU) and R. Gran (UMD)
- Berger-Sehgal coherent π production (PRD 79:053003, 2009)
 G. Perdue (Fermilab), H. Gallagher (Tufts), D. Cherdack (CSU)
- Alvarez Ruso, Geng, Hirenzaki and Vacas microscopic coherent pion production (PRC 75:055501, 2007; PRC 76:068501, 2007)
 D.Scully, S. Dennis and S. Boyd (Warwick)

GENIE v2.12.0 new physics models

- Oset, Salcedo and Strottman FSI model (Phys. Lett. B 165:13, 1985; Nucl. Phys. A 468:631, 1987.)
 T. Golan (Fermilab and Rochester)
- Kaon FSI improvements
 F. de Maria Blaszczyk (LSU), S. Dytman (Pitt)
- Pais QE Hyperon production model (Ann. Phys. 63:361, 1971)
 J. Poage and H. Gallagher (Tufts)
- Updated Rein diffractive pion model (Nucl.Phys. B278:61, 1986).
 J. Wolcott (Tufts)
- Several resonance model updates.
 L.Jiang (Pittsburgh) and I.Kakorin (JINR & ITEP)
- Kuzmin, Naumov energy-dependent axial-mass model.
 I.Kakorin (JINR & ITEP)

Other notable changes - v2.10 and v2.12

- Upgrade of nucleon decay generator in GENIE. M.Sorel (IFIC)
- Simulation of n n̄ oscillations.
 J. Hewes and G. Karagiorgi (Manchester)
- New Honda, Athar, Kajita, Kasahara and Midorikawa (HAKKM) atm. ν flux (PLB718:1375, 2013) driver added to existing FLUKA and BGLRS ones. *G.Majumder, A.Ajmi (INO Collab.); T.Katori (QMUL)*
- A new unified event generation app for all Fermilab experiments (in the NuMI, Booster and LBNF beamlines) and updates in the flux drivers.
 R.Hatcher (Fermilab)
- Event reweighting I/O J. Yarba (Fermilab)
- New GSL (GNU Scientific Library) dependency S. Dennis (Warwick/Liverpool)
- "ROOT6 and C++11"-ready! S.Dennis (Warwick/Liverpool)
- LHAPDFv5 dependence now optional; CERNLIB/PDFLIB discontinued. S.Dennis (Warwick/Liverpool)
- + Bug fixes. For a detailed list see: https://releases.genie-mc.org

GENIE v3.0.0