The Selena Neutrino Experiment

Alvaro E. Chavarria University of Washington

Outline

- The Selena neutrino experiment.
- Neutrinoless $\beta\beta$ decay. ¬
- Solar neutrinos.
- Sterile neutrinos.

Broad neutrino science program!

- Detector technology: hybrid **aSe/CMOS** pixelated devices.
- Toward a large detector.
- Conclusion.

Detector goals

- Excellent *energy resolution* to perform precision spectroscopy, e.g., distinguish 0v signal from $2v \beta\beta$ decay background.
- Excellent *spatial resolution* to suppress backgrounds by event topology, e.g., number of Bragg peaks, decay sequences, etc.
- *Easy to build*: room temperature operation, not very stringent radio purity requirements or fiducialization, etc.
- Scalable: standard CMOS foundry process (300 mm diameter wafers) and industrial aSe deposition.

Background suppression

High resolution imaging in a solid-state target provides unique opportunities for signal/background discrimination!

- Determine the number and types of particles (β , α , etc.).
- Determine the end-point of β tracks by identifying the Bragg peak.
- Since atoms remain immobile in the solid target, we can identify radioactive decay sequences with time separations of up to weeks!
- DAMIC uses this strategy to constraint the decay rates of every β in the U and Th chains.

JINST16(2021)P06019

Spatial correlations Data from DAMIC

• ²¹⁰Pb surface background:

• Cosmogenic ³²Si:

Search for spatially correlated beta decays. Sensitivity with current data is few Bq/kg.

Science case

With a 10-ton detector (100 ton-year exposure)

Excellent energy resolution to distinguish neutrinoless decay

High Q-value to avoid background from U+Th

Bonus: Identify the $\beta\beta$ decay in an event-by-event basis by measuring the event topology (two electrons vs. one).

Selena ββ

- By identification of Bragg peak we can achieve 10⁻³ suppression of single electron background, with 50% signal acceptance.
- Bulk backgrounds suppressed by α/β particle ID, spatial correlations.

x [mm]

/keV/ton/year! JINST12(2017)P03022 $T_{1/2} > 10^{28} years$ limit on $^{82}Se 0_{\nu\beta\beta}$

Background rate <6 x 10⁻⁵

x [mm]

7.5

[**m**m]

ь

ν_{e} detection

Backgrounds

- Expected number of three accidental events in 100 µm² (22 µg) is <10-4 in 100 ton year.
- Other α, p, or n reactions that make ⁸²Br* have a different prompt event topology.
- No cosmogenic isotope starts a decay chain that mimics the triple coincidence.

 Some neutron captures on Se isotopes can give triple coincidences but their event topologies are also very different.

> No identified background to mimic the triple coincidence. Possibility of zero background *v* spectroscopy!

Solar neutrinos

Solar fluxes

- Nuclear reactions in the sun.
- *pp* + CNO cycles.
- Predicted by solar models.

Survival probability

- Vacuum oscillations, matter effects.
- Precise prediction by MSW-LMA (parameters from PMNS matrix).

Prompt spectrum

 $v_e + {}^{82}Se \longrightarrow {}^{82}Br^* + e^- + C.E. (29 \text{ keV})$ Capture $\sigma(E)$ from $f_{E_v} - 172 \text{ keV}$

100 ton-year

Species	E range (keV)	Ν	1/√N
рр	29 - 278	6170	1.3%
⁷ Be	665 - 775	1850	2.3%
pep	1230 - 1360	151	8.1%
CNO	278 - 655 785 - 1220	63	12.6%
⁸ B	⁸ B (1.5 - 15) x 10 ³		6.9%

Solar Physics

- Solar luminosity: *pp* rate unc. improved to 1.3% (currently ~10% by BX). Flux measurement uncertainty depends on uncertainty on *v_e* capture *σ*. If calibrated to *v-e* scattering *σ* by comparing measured ⁷Be rate with BX, sys. unc. = 3.5%.
- Solar metallicity: CNO flux measured to ~10%. Difference between high- and low-metallicity solar model predictions: 28%.
- Solar core temperature:

PRD 49, 3923 (1994)

Species	RMS width (keV)	Mean unc. (keV)	Line diff. (keV)	Fraction
⁷ Be	14.8	0.34	1.29	26%
pep	19.8	1.60	7.59	21%

Neutrino physics

Onset of matter effects in v oscillations: pep/pp rate ratio measured to 8%. Flux ratio very well predicted by SSM, MSW effect should suppress pep ve flux by 7%. NSI could increase this.

Sensitive probe for neutrino transport in the Sun

Sterile *v*

- The gallium anomaly: Observed ve capture rate from sub-MeV EC sources is 80±5% of expected. Recently confirmed by BEST.
- ► We expect ~3000 v_e captures from a 3.5 MCi ⁵¹Cr source at the center of a 10 ton Selena detector, in a similar configuration to BEST.

Selena could confirm oscillations into sterile neutrinos as the explanation!

Detector technology

Amorphous Se detectors

aSe X-ray detectors are used in medical imaging. 720 cm², 1 mm-thick. Pixel size: 85 µm x 85 µm.

Operated at high electric fields (~10s V/µm) and ~50 e-h pair per keV for 140 keV X-rays.

Large band gap: ~pA/cm² dark current at room temperature.

Present limitation: 1000 e-h RMS noise per pixel (from readout and leakage current).

R&D: Single pixel

JINST16(2021)P06018

R&D: Single pixel

JINST16(2021)P06018

High S/N pulses from photo absorption of 122 keV γ rays

HV: 6 kV, Signal: ~5000 e-, Baseline noise: 270 e- RMS

- μ_h is significantly higher than the μ_e in aSe (measured in Ref.).
- Pulse shape depends on the depth of the interaction.

Demonstrated depth reconstruction from pulse shape for the first time!

R&D: Single pixel

JINST16(2021)P06018

R&D: Topmetal-II-

Before aSe

Test board

After aSe

Setup at CENPA

- From Berkeley Lab.
- CMOS pixel array with exposed metal electrodes.
- ▶ 83 μ m pixel pitch.
- ► 15 e⁻ pixel noise.

R&D: Topmetal-II-

- Improved noise by 50x relative to commercial detector.
- Imaged electron tracks in amorphous selenium (at room temperature!) for the first time.

Technological

breakthrough!

24

R&D: Package

- Current aSe/CMOS device tested was an already-packaged Topmetal-II- with aSe deposited on top.
- HV electrode is smaller than pixel array and aSe tapers off within the pixel array.
- We are developing new package so that device is the same size as standard test devices at Hologic (4x4 cm²).
- Expect much more uniform electric field within pixel array and higher HV can be applied.

Toward a large detector

Selena module

- Module design has evolved beyond original proposal.
- Now we plan for thick aSe to fully contain electron tracks.
- ▶ Back-to-back imagers with ~2 kg of active ⁸²Se per module.
- More functionality on CMOS pixel array: time-of-arrival (TOA) of charge for 3D reconstruction, signal processing.

300-mm diameter wafer

Selena module

Front wafer with aSe

Back wafer with vias

Cross section of edge

HV electrode

Pixel array specs:

- 15 μ m pixel pitch.
- ► 15 e⁻ pixel noise.
- Pixel charge measurement accurate to ~10 e⁻.
- ► 5 ns TOA resolution.
- ► 50 mW/cm².

100 kg Demonstrator

- ► 50 modules for 100 kg of a⁸²Se.
- ▶ ⁸²Se from cryogenic distillation of H₂Se?
- Dedicated aSe deposition chamber with recovery.
- Our partners at Hologic deposit 1 ton of aSe per year.

The demonstrator would detect 5 pp neutrinos and 15,000 $\beta\beta$ decay events > 2 MeV with zero background after one year of operation

- Demonstrate detector response (esp. energy resolution) to events with energies up to Q_{ββ}.
- Demonstrate background suppression capabilities.

Conclusion

- Selena is a proposed neutrino experiment to perform zero-background spectroscopy of ββ decay and lowenergy neutrinos.
- High resolution imagers with a target layer of a⁸²Se.
- Technology development stage.
- Early R&D milestones: *i*) measurement of energy response, *ii*) first electron tracks in a CMOS/aSe device.
- Next steps: finalize R&D to develop a large-area module.
- Building block for a 100 kg demonstrator and beyond!

Thank you!

White paper authors and collaborators:

- University of **Washington**: Alvaro E. Chavarria, Alex Piers, Harry Ni.
- Berkeley Lab: Yuan Mei, Xinran Li.
- Cristiano Galbiati (Princeton U.) and Hanguo Wang (UCLA).
- Carlos Peña Garay (LSC) and Aldo Ianni (LNGS).
- Hologic Coporation: Brad Polischuk, Snezana Bogdanovich.

