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Coherent Elastic Neutrino-Nucleus Scattering (CEVNS)

Rich phenomenology (45 years worth of it)

and counting
(~100 citations / year for 1st measurement)



Why CsI[Na]? (NIM A773 (2014) 56)

Large N2 => large x-section.

Cs and | surround Xe in Periodic Table:
they behave much like a single recoiling
species, greatly simplifying
understanding the NR response.

Quenching factor in energy ROI suf
for ~5 keVnr threshold

Statistical NR/ER discrimination may be
possible at low-E (with large statistics).

Sufficiently low in intrinsic backgrounds
(U, Th ,K-40, Rb-87, Cs-134,137)
Measurements in complete SNS shield
and 6 m.w.e. indicated we were ready)

Practical advantages: High light yield
(64 ph/keVee), optimal match to bialkali
PMTs, rugged, room temperature,
inexpensive ($1 /g), modest afterglow
(Csl|TI] not a viable option for surface
experiment).

Expected ~550 n recoils/year in 14 kg
detector at SNS (before cuts).
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Why CsI[Na]? (NIM A773 (2014) 56)

Large N2 => large x-section. - O

Cs and | surround Xe in Periodic Table: 10' £
they behave much like a single recoiling F
species, greatly simplifying

understanding the NR response.

Quenching factor in energy ROI sufficient > '

for ~5 keVnr threshold

Statistical NR/ER discrimination may be
possible at low-E (with large statistics).

recoils / keV kg year

Sufficiently low in intrinsic backgrounds
(U, Th ,K-40, Rb-87, Cs-134,137)
Measurements in complete SNS shield
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Practical advantages: High light yield
(64 ph/keVee), optimal match to bialkali
PMTs, rugged, room temperature,
inexpensive ($1 /g), modest afterglow
(Csl|TI] not a viable option for surface

experiment). \
Expected ~550 n recoils/year in 14 kg

detector at SNS (before cuts).

Csl[TI] not an option
due to excessive afterglow
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Reactors: taking CEVNS to the next level

1021
. SNS ________ . environmental
10" = W background
& o9 | e e e e N ] v, subtraction is
% 10 WAl REdeioss MIT reactor posSib-le for
= B N \é (5 MW) spallation
: H Advanced Test sources
— 13 B g reactor (110 MW)
é 10 = : San Onofre
= L-=T =S reactor (3.4 GW)
1011 R e el EC Sources:
— =T | 37 Ar (5 MCi)
9| oot
W 05 1.0 50 100 50.0
E, [MeV]
Enectali Figueroa-Feliciano / vMass 2013 / Milano Mir
Many pros and cons:
» Even lower recoil energies (scintillators discouraged)...
* ... but much higher v flux
* Rx-OFF periods are short (time is money) Spallation source
* No background subtraction (steady-state source) CEVNS signal
+ Spallation sources produce x200 n per v... is characteristic
* ... some reactor sites offer excellent bckg control in both
energy

Almost a perfect quid pro quo. Very different game. and time



New CEvVNS detector R&D at UC: PPCs

arXiv:nucl-ex/0701012 NIM A 665 (2011) 25

Ge PPC:

unique combination of
mass, radiopurity,
threshold and resolution
provide ideal tool for
precision CEnNS studies,
and practical applications
(reactor monitoring)
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Inverted coax PPC
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Design
uses
ultra-low
background
materials.
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Modified
cryostat
reduces
sensitivity

to
microphonics
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threshold and resolution
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precision CEnNS studies,
and practical applications
(reactor monitoring)
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Turning a ~15 yr old sketch into a reality...

muon veto

passive

shielding

internal veto
+

PPC detector

Cryo-cycle
Dewar




Turning a ~15 yr old sketch into a reality...

muon veto

passive

shielding

internal veto
+

PPC detector

Cryo-cycle
Dewar

SPE
low-bckg
inner

neutron veto



Fuel
Elements
10.4 m away
(7.5-13.3m)

4.8E13 v/cm?s

60cm x 60cm
footprint.

Assembled
by 3 workers
in one day.

Turning a ~15 yr old sketch into a reality...

NCC-1701
o



Turning a ~15 yr old sketch into a reality...

post-toy confiscation

De rigueur
selfie
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Ge detector threshold (keV )

Turning a ~15 yr old sketch into a reality...

post-toy confiscation

Not so far from a “v technology”...

3.5 vath’ CEvVNS detection & study (5 o in 24 h)
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Ge detector threshold (keV )

ee

Turning a ~15 yr old sketch into a reality...

Not so far from a “v technology”...

3.5 GW_, 20 kg *’Pu diversion (2 o/in 90 d)
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post-toy confiscation



C.E. AALSETH et al.  PHYSICAL REVIEW D 88, 012002 (2013)
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Secret sauce: FPGA DAQ

(something old, something new)

PHYSICAL REVIEW D 104, 072003 (2021)

FPGA-based intelligent trigger
algorithms implement old analog
tricks in real-time, providing
ultimate in low-threshold
performance.

Ultra-low threshold is posible
without data throughput bottleneck.




Digitize and you shall conquer
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Misc Settings
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Counts x 10° / 0.05 keV,,

Quenching factor characterization: the key ingredient

PHYSICAL REVIEW D 94, 122003 (2016)
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high threshold, large crystal (dominated by multiple scattering)



counts / keV 53g Nal[T1] day

Quenching factor characterization: the key ingredient

PRL 110, 211101 (2013)

Applications of an 33Y/Be Photoneutron Calibration Source
to Dark Matter and Neutrino Experiments

J.L Collar*

L e e L E e e B P R s e
[ I recoils — 20 cm Pb, neutrons ]
L E =152 keV — 15 cm Pb, neutrons N
E 2 no Pb, neutrons E
B tissmeses 20 cm Pb, gammas b

Na recoils ======= 15 cm Pb, gammas .
L E=152keV = e no Pb, gammas -
- ¢1271<n,n-y) ]

E=57.6 keV(+recoil E)|

E Na recoils ﬁ .
L E =963 keV ]
PR S (AR S A S N [ S S WS R
20 40 60 80

energy (keV,,, keV),;)

convenient technique
(but you must trust your simulations)

LZ added a new photo to the album: Ato Z of LZ.
May 4, 2020 - @

Y is for YBe or Yttrium Beryllium!

LZ has a special neutron source for calibrations made from the elements yttrium and beryllium
that produces almost monoenergetic neutrons. The yttrium decays and releases a gamma ray,
which interacts with the beryllium to produce a single neutron of around 200keV. These low
energy neutrons are useful for calibrating nuclear recoils within the expected dark matter
energy range.

The YBe source sits inside a tungsten shield (a mock up is shown in gold) to absorb the
gamma rays, since we only want neutrons to get to the detector. This is lowered down to the
top of the detector through a special port on top of the water tank.

Calibration sources like this are essential for understanding what dark matter looks like in LZ!




Quenching factor (%)
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Quenching factor characterization: the key ingredient
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PHYSICAL REVIEW D 100, 033003 (2019)

Response of CsI[Na] to nuclear recoils: Impact on coherent elastic
neutrino-nucleus scattering

.1 Collar,” A.R.L. Kavner, and C. M. Lewis

Went in hoping for a surprise...
(massive rise in low-E QF for o’s)

Response of undoped cryogenic CsI to low-energy nuclear recoils

C.M. Lewiff] and J.I. Collar

Physics-based model (Birks + kinematic cutoff) works here (the exception)



Quenching factor characterization: the key ingredient

anything goes for the QF at sub-keV energies?



Quenching factor characterization: the key ingredient

Improved detector:

x5 lower threshold

excellent E resolution

1 cm® — dominated by single recoils
n-type (no dead + transition layers)
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counts / 10 days
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1) photoneutron sources

eff.-corrected residual (counts / 60 eV)
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1) photoneutron sources
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2) recoils from ny, capture
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2) recoils from ny, capture
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2) recoils from ny, capture



3) recoils from Fe filter

air T T T T T T T T reactor core —p»
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3) recoils from Fe filter
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quenching factor (%)
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Internal consistency x-checks

(going back full-circle to “that ain’t Lindhard”)

Also tested against earlier result with higher (x 5) threshold



Paging Mr. Migdal?

~2000: DAMA invokes Migdal, "Migdal” becomes a dirty word.

“Migdal may be late, but Migdal never lets you down”

(it would not come as a big surprise...)

PRL 108, 243201 (2012) PHYSICAL REVIEW LETTERS 13 TONE 2002

First Measurement of Pure Electron Shakeoff in the 8 Decay of Trapped *He * Ions

C. Couratin,' Ph. Velten,' X. Fléchard,"* E. Liénard,' G. Ban,' A. Cassimi,? P. Delahaye,? D. Durand,' D. Hennecart,?
F. Mauger,' A. Méry,? O. Naviliat-Cuncic,'* Z. Patyk,’ D. Rodriguez,® K. Siegiei-Iwaniuk,® and J-C. Thomas®

PHYSICAL REVIEW A 97, 023402 (2018)

Electron shakeoff following the 8+ decay of ’Ne* and **Ar™ trapped ions

X. Fabian,""" X. Fléchard,"' B. Pons,” E. Liénard,' G. Ban,'! M. Breitenfeldt,’* C. Couratin,' P. Delahaye,* D. Durand,’
P. Finlay,’ B. Guillon,' Y. Lemiére,' F. Mauger,! A. Méry,” O. Naviliat-Cuncic,':® T. Porobic,’ G. Quéméner,’
N. Severijns,’ and J.-C. Thomas*

A.B. Migdal
From B. loffe ”Atom Projects: Events and People”



Toto, we’re not in Kansas anymore:
for CEVNS studies, the QF is the crux

Csl[Na] LAr (COHERENT collab.)
5% uncertainty in 5-25 keV ROI 2% uncertainty in >20 keV ROI claimed (?)
Physics-based model (Birks + kinematic threshold) Linear fit (because “it isn’t completely unreasonable”)

We are not looking for WIMPs:
we have predictable signals, from
particles known to exist.

Time to start taking this subject
seriously... it can make the
difference between discoveries

and embarrassment.
HPGe



Recent developments

arXiv:2201.10578v1

— underestimated uncertainty in energy scale.
— negative non-linearity (50% @ 100 eV,.) unaccounted for. . ,
See arXiv:2203.00750v2 3.5 o for millicharged v’s

\ or use of a biased QF?



(counts / 10 eV 3 kg day)
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arXiv:2202.09672v1 We will do better than this!
Suggestive evidence for coherent elastic neutrino-nucleus scattering
from reactor antineutrinos
J. Colaresi', J.I. Colla.rzﬂ T.W. Hossbach®, C.M. Lewis?, and K.M. Yocum!
! Mirion Technologies Canberra, 800 Research Parkway, Meriden, CT, 06450, USA
2Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA and
* Pacific Northwest National Laboratory, Richland, Washington 99354, USA
(Dated: February 22, 2022)
signal/bckg >20

expected following
redeployment in
tendon gallery



Towards a precision measurement of reactor CEVNS

Vandellos deployment approved by Spanish ENUSA 200 o 1(4 -------- T 530 m. Y
Braidwood deployment also TBD N T ' (arkivioso2 1653

Vandellos (Tarragona)
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of > x 20 (present is %)
is firmly expected.



There is no peace for the living
(upcoming QF work at OSURR thermal beam)
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Will provide dramatic test of
Lindhard in HPGe at 0.4 keVnr

In addition to this:

— attempt to reduce error bar in 0.25 keVnr datapoint
— improved analysis of Y/Be data with MCMC



Looking at the future: CEVNS @ ESS

ESS is the ultimate source for CEVNS, as far as
the eye can see.

As such, it deserves next-generation nuclear
recoil (NR) detectors.

Precision: removing statistical limitations is
possible at the ESS with non-intrusive detectors.

Concentrate instead on device performance
(1 keV,, thresholds) and understanding of their
response (QF, quenching factor).

Develop multiple technologies to meet challenge.
Benefit from their synergies.

Perfect timing vis-a-vis ESS start.

Enthusiastic reception. Work (and flow of funding)
has started!

signal-to-background (relative to SNS)
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Looking at the future: CEVNS @ ESS

JHEP 02 (2020) 123

Coherent Elastic Neutrino-Nucleus Scattering at the European Spallation Source

D. Baxter,! J.I. Collar,’* P. Coloma,? ! C.E. Dahl,34 1. Esteban,> ! P. Ferrario, 7§
J.J. Gomez-Cadenas,® 7Y M. C. Gonzalez—Garcia,> %% ** A.R.L. Kavner,! C.M. Lewis,!

ESS is the ultimate source for CEVNS, as far as F. Monrabal,% 7t J. Muiioz Vidal,® P. Privitera,! K. Ramanathan,! and J. Renner!®
the eye can see.

ESS ESS-SB
(if ever)
As such, it deserves next-generation nuclear
recoil (NR) detectors.
Precision: removing statistical limitations is
possible at the ESS with non-intrusive detectors.
Concentrate instead on device performance
(1 keV,, thresholds) and understanding of their fa"rg;fg;mbmaﬁon
response (QF, quenching factor).
Develop multiple technologies to meet challenge. %
Benefit from their synergies. [
o
Perfect timing vis-a-vis ESS start. 4 B physics needs
c ultra-low thresholds
Enthusiastic reception. Work (and flow of funding) g (v magnetic moment here)

has started!
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response (QF, quenching factor).

Develop multiple technologies to meet challenge.
Benefit from their synergies.
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Enthusiastic reception. Work (and flow of funding)
has started!

S N S 2 year room-T Csl[Na] run, ~150 CEVNS events
Science 357 (2017) 1123

=~ keVnr

~x10 v flux
~x10 low-E signal acceptance

ESS JHEP 02 (2020) 123

Compact 32 kg array of cryogenic Csl
yields up to 12,000 CEVNS cts/yr
while reaching 1 keVy,

(compare w/ ~20 keV,, for LAr)



Looking at the future: CEVNS @ ESS

ESS is the ultimate source for CEVNS, as far as
the eye can see.

As such, it deserves next-generation nuclear
recoil (NR) detectors.

Precision: removing statistical limitations is
possible at the ESS with non-intrusive detectors.

Concentrate instead on device performance
(1 keV,, thresholds) and understanding of their
response (QF, quenching factor).

Develop multiple technologies to meet challenge.
Benefit from their synergies.
ynerg cryo Csl

Perfect timing vis-a-vis ESS start.

Enthusiastic reception. Work (and flow of funding)
has started!

JHEP 02 (2020) 123

cryogenic Csl 1 _keynr goal
+ LAAPD readout /Wlthln reach
+ NOL waveshifter = record scintillator yield ;yep o2 (2020) 123
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ESS is the ultimate source for CEVNS, as far as
the eye can see.

As such, it deserves next-generation nuclear
recoil (NR) detectors.

Precision: removing statistical limitations is
possible at the ESS with non-intrusive detectors.

Concentrate instead on device performance
(1 keV,, thresholds) and understanding of their
response (QF, quenching factor).

Develop multiple technologies to meet challenge.
Benefit from their synergies.
ynerg cryo Csl

Perfect timing vis-a-vis ESS start.

Enthusiastic reception. Work (and flow of funding)
has started!

full characterization,
long-term stability,
low-E QF, already studied

46 cm?2 LAAPD
from RMD Inc.
test cryostat
(one of two)

32 kg goal.

Ambitious: room T Csl commonly used in HEP.

This will be the 1st application of cryogenic (80K) Csl.

PRC 104 (2021) 014612

NOL-9 waveshifter
exit plate illuminated
by 360 nm UV LED

(but A LOT more work planned)



Looking at the future:

ESS is the ultimate source for CEVNS, as far as
the eye can see.

As such, it deserves next-generation nuclear
recoil (NR) detectors.

Precision: removing statistical limitations is
possible at the ESS with non-intrusive detectors.

Concentrate instead on device performance
(1 keV,, thresholds) and understanding of their
response (QF, quenching factor).

Develop multiple technologies to meet challenge.
Benefit from their synergies. H P G as

Perfect timing vis-a-vis ESS start.

Enthusiastic reception. Work (and flow of funding)
has started!

CEVNS @ ESS

Reinvestment of
NEXT 0OvBp
technology

HP gas funding already secured via lkerbasque Foundation
and ERC Horizon (GavESS) + Marie Curie (VPESS) proposals
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ESS is the ultimate source for CEVNS, as far as
the eye can see.

As such, it deserves next-generation nuclear
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possible at the ESS with non-intrusive detectors.

Concentrate instead on device performance
(1 keV,, thresholds) and understanding of their
response (QF, quenching factor).

Develop multiple technologies to meet challenge.
Benefit from their synergies. H P G as

Perfect timing vis-a-vis ESS start.

Enthusiastic reception. Work (and flow of funding)
has started!

Excellent promise of HP gas in this new area:
possible ER discrimination, E resolution, ability to swap targets.
However no knowledge of QF (present emphasis)

JHEP 02 (2020) 123

53 54 55
I Xe Cs
lodine Xenon Cesium
126.904 131.294 132.905

Unique

Csl / Xe overlap:/

same response,

different systematics.

Ideal for physics beyond SM search



Looking at the future: CEVNS @ ESS

ESS is the ultimate source for CEVNS, as far as
the eye can see.

As such, it deserves next-generation nuclear
recoil (NR) detectors.

Precision: removing statistical limitations is
possible at the ESS with non-intrusive detectors.

Concentrate instead on device performance
(1 keV,, thresholds) and understanding of their
response (QF, quenching factor).

Develop multiple technologies to meet challenge.
Benefit from their synergies.

Perfect timing vis-a-vis ESS start.

Enthusiastic reception. Work (and flow of funding)
has started!

Close collaboration with ESS personnel vis-a-vis specific issues (site selection,

neutron simulations, official approval process, timing). Eight ESS personnel co-

signers of 61-author LOI under review. Strong support from Directorate. Part of
upcoming White Paper on Fundamental Physics at the ESS.

Site selection during ESS visit

utility room
“earmarked”
for CEVNS
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Close collaboration with ESS personnel vis-a-vis specific issues (site selection,

neutron simulations, official approval process, timing). Eight ESS personnel co-

signers of 61-author LOI under review. Strong support from Directorate. Part of
upcoming White Paper on Fundamental Physics at the ESS.

ESS is the ultimate source for CEVNS, as far as
the eye can see.

As such, it deserves next-generation nuclear
recoil (NR) detectors.

Precision: removing statistical limitations is
possible at the ESS with non-intrusive detectors.

Concentrate instead on device performance . ”N:CNPtX/GEANT I
massively-parallel neutron transport simuiations

(1 kevnr thresho|ds) and understanding of their (Ben Gurion / Chicago / DIPC / ESS / Lund paper in preparation)
response (QF, quenching factor). o
Develop multiple technologies to meet challenge. S 10-17§
Benefit from their synergies. ; L

©

= 107
Perfect timing vis-a-vis ESS start. -

o 107
Enthusiastic reception. Work (and flow of funding) %
has started! e %)

g :
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