

Super-Kamiokande Gadolinium project (SK-Gd) for supernova neutrino hunting **JPER**

Fermilab Neutrino Seminar on Mar. 31, 2022

Hiroyuki Sekiya

Kamioka Observatory, ICRR, The University of Tokyo

Super-Kamiokande

Since July 2020 Super-Kamiokande Gd

The most significant upgrade in SK history While the look inside the inner detector hasn't changed.

Super-Kamtokande

Super-Kamiokande C

Complete replacement of the water system

-1

Super-Kamiokande experimental phases

"SK-Gd is a broad and general term for the experiment after the start of the Gd-loading."

• The phase of the experiment is still called SK-VI, SK-VII,....

Super-Kamiokande VI

- Ring imaging Gd-doped water Cherenkov detector
 - 49.5k m³ of pure water with 5.4 tons of Gd (0.011 w%)
 - ~50% Neutron capture efficiency
 - Target volume 32k $m^3\,$ for SN ν
 - 11129 50cm PMTs for Inner detector
 - 1885 20cm PMTs for outer detector
- 1km (2700 mwe) underground in Kamioka
- Measurable : Energy, neutrino types, and direction
- Most sensitive to $\overline{v_{e}}$ through inverse beta decay in the low energy region.

Contents

- Supernova and Diffuse Supernova neutrino Background
- DSNB search in SK-IV(pure water phase)
- The SK-Gd Project
 - R&Ds had been pursued.
 - Gd-loading to Super-Kamioknade (SK-Gd)
- SK-Gd status and the next step
- Enhanced SN burst alert system of SK-Gd
- New SN burst early warning system

Supernova neutrinos

• The only detected SN neutrinos are from LMC(50kpc) in 1987.

- The obtained binding energy is almost as expected, but large error in neutrino mean energy. No detailed information of burst process.
- We need energy, flavor and time structure.

If SN happens in our Galaxy

SK should get enough statistics to discriminate models!

For SN at 10 kpc

57

Diffuse Supernova Neutrino Background Supernova Relic Neutrino

Neutrinos emitted in past supernova explosions and stored in the current universe

- In the entire universe, several supernova explosions occur every second.
- There must have been $O(10^{18})$ explosions in the history of the universe.

v, Energy [MeV]

DSNB signal in Super-Kamiokande

- Main channel: Inverse beta decay ($\overline{v}_e + p \rightarrow e^+ + n$).
- **Signal window:** Between reactor neutrinos and atmospheric neutrinos.
- Event rate: A few interactions/year/SK

The spallation background

Spallation products of oxygen nuclei induced by the ${\sim}2\text{Hz}$ muons

 Below 20 MeV, the associated background is 10⁶ times higher than the DSNB flux prediction.

BG reduction is essential

- Nuclei that decay without neutrons(>99%)
 - Correlation with muons and the neutron tagging
- Nuclei that decay with neutrons (e.g., ${}^{9}Li$, < 1%)
 - Correlation with muons is the only useful information

Cuts-based reduction uses distance and time difference from muons, etc.

- Removal efficiency: > 90%
- Signal efficiency: 50-90% (depending on energy)

Neutron-tagging in pure water

 $n + H \rightarrow D + \gamma (2.2 \text{ MeV})$

• Neutron capture by H ($\tau \sim 200 \mu sec$)

- 2.2MeV $\rightarrow \sim$ 7PMT hits (out of 11000PMTs)
- Buried in the low energy background events (dark noise in PMT, RIs, radon, etc.)

• Trigger scheme in DAQ

 If ~9 MeV or higher events exist (Super High Energy trigger), all hits for the next 500 us are recorded (AFTer trigger).

• Machine learning-based neutron selection algorithm

- 22 parameters used in BDT.
 - PMT hit pattern, cluster hits, the distance between the primary and delayed events, etc.
- Trained for 2.8×10^8 neutron candidates.
 - With 2×10^6 simulated neutron captures and accidental coincidence events
- Efficiency: 18~30% with 0.2~3% mis-tagging.
- Systematic uncertainty: 12.5% checked by Am/Be calibration.

The Results form SK-IV

Phys. Rev. D 104, (2021) 122002

Background : Atmospheric vCC

- When muons are not visible (below Cherenkov threshold), and only electrons are observed
- The energy distribution is the well-known Michael spectrum

- Small contribution to DSNB region
- These BGs (using >30MeV region) are subtracted with 20% systematic uncertainty

 ν_{μ} CC

Background : Atmospheric vNC

NC(QE)

- Largest uncertainty $\nu_x/\overline{\nu}_x$ Systematic error: 60-80% (energy-dependent)
 - Atm. v flux × NCQE cross-section
 - (←T2K measurement)
 - \times Number of generated neutrons

(-T2K CC measurement)

 \times Neutron detection efficiency

 $(\leftarrow Am/Be \ calibration)$

Understanding and reducing this uncertainty is essential!

Background : Accidental and Spallation

Events/2-MeV

Accidental

• Spallation events without neutrons

+ fake neutron

• Beta decay + n: same topology as IBD

Both can be reduced using the spallation cut and strict neutron selection, but there is a tradeoff with the efficiency of detecting signal events. \rightarrow Optimize cut conditions for each energy

16

Model-independent limit

Strongest limit

above 15 MeV

 Already reached some model prediction regions

Spectral shape fitting

For each DSNB model, the obtained energy spectra were fitted with expected BG above 15.5MeV region.

• Side-band regions separated by Cherenkov angles were fitted simultaneously.

Low angle region:

 $\begin{array}{c} \mbox{Atmospheric backgrounds} \\ \mbox{involving visible } \mu \mbox{ and } p. \end{array}$

High angle region:

NCQE events with multiple γ -rays.

"IBD-like" events (exactly one identified neutron) and "non-IBD-like" events are also separated.

• Due to the low efficiencies of the neutron tagging cuts, the non-IBD-like events still contain a sizable signal.

Limits to Models

- The number of observations is about 1 σ larger than the background, and the limit is worse than the sensitivity.
- 90% CL sensitivity reached the region below some model predictions.
- Future SK-Gd observations will validate most models.
- Aiming for the world's first observation of supernova background neutrinos

How Gd-loading helps?

In SK-IV(pure water), accidental coincidence remains due to low neutron tagging efficiency

- Reduction of accidental BG (approx. 1/10) with high neutron detection efficiency.
- Also signal statistics increases (2~3 times)

Pure water(SK-IV)

Further improvements expected (understudy)

- The next largest BG that should be reduced is the atmospheric NCQE.
- Gd also helps to reject the NCQE BG.
 - Neutron multiplicity counting
 - The neutron capture vertex resolution

SK-Gd (2020-)

Isotope	Natural abundance ratio [%]	Thermal capture cross section [barn]
^{152}Gd	0.20	740
^{154}Gd	2.18	85.8
$^{155}\mathrm{Gd}$	14.80	61100
$^{156}\mathrm{Gd}$	20.47	1.81
$^{157}\mathrm{Gd}$	15.65	254000
$^{158}\mathrm{Gd}$	24.84	2.22
$^{160}\mathrm{Gd}$	21.86	1.42
$^{1}\mathrm{H}$	99.99	0.33
^{16}O	99.76	0.0002
^{32}S	94.85	0.53

Gd-loading to SK

- Significantly enhances detection capability of neutrons from $\overline{\nu}$ interactions
- Initial loading was conducted in July-August 2020. 0.011% Gd concentration was achieved, about 50% of neutron would be captured by Gd

Gd-loading is not trivial! It's Chemistry!

- Gd metal is not soluble in water. A compound must have been selected.
 - Gadolinium chloride solution rusts even SUS tanks
 - Cherenkov light does not pass through gadolinium nitrate solution
- Gadolinium sulfate octa-hydrate $Gd_2(SO_4)_3 \cdot 8H_2O$ was chosen.

Other difficulties we have overcome

R&D items in 2016

Stopping the SK leakage 1st level Environmental Estimation of the leak location Safety Development of the leak-fixing method • Reduction of RIs from $Gd_2(SO_4)_3$ powder Test of Ra removal resins 2nd level Material screening with HP-Ge detectors Minimize negative • High sensitivity measurement with ICP-MS impacts to on-going Test with the EGADS demonstrator physics programs at SK • Continuous monitoring of the water quality • Continuous monitoring of Gd concentration • Demonstration of Gd-captured neutron signal/QBEE upgrade 3rd level Construction of the new water system Further investigate physics capability Gd gamma measurements and improved simulation of with n-tagging Gd capture

Stopping the SK leakage

The tank was refurbished with water sealing by painting resin on all the welding line from May 31, 2018, to January 29, 2019.

• After the work, ultrapure water was filled in the tank. A leak test was conducted; the change in water level in the tank was measured from 11:30 on January 31, 2019, to 15:52 on February 7, 2019.

No significant water leakage was observed (less than 17 liters per day).

 \rightarrow Gd-loading ready!

Water purification

Gd sulfate could not be introduced with the original SK water system designed to remove all the impurities other than H_2O .

Key technology: Ion exchange resin

Development of special ion exchange resins Anion exchange resin $OH^- \rightarrow SO_4^{2-}$

Cation exchange resin $H^+ \rightarrow Gd^{3+}$

RI impurities (Ra²⁺, UO₂(SO₄)₃⁴⁻ etc.) are also removed.

Pretreat + Recirculation system

The flow rate has been doubled to 120m³/h
 2 x 60m³/h for maintenance

Piping upgrade and modification of outlets

For doubling the circulation flow rate

To avoid convection currents rolling up the Rn at the bottom of the tank.

Pipe upgrade in 2018

Required purity of $Gd_2(SO_4)_3 \cdot 8H_2O_4$

- Radioactive impurities (²³⁸U, ²³²Th, etc.) affect SK's solar neutrino observations above 3.5MeV due to energy resolution.
- 99.999% high purity products contain 50~100 mBq/kg of RIs.

	Main sub-	Radioactive				
Chain	chain	concentration				
	isotope	(mBq/kg)				
²³⁸ U	²³⁸ U	50				
	²²⁶ Ra	5				
²³² Th	²²⁸ Ra	10				
	²²⁸ Th	100				
²³⁵ U	²³⁵ U	32				
	²²⁷ Ac/ ²²⁷ Th	300				

3 orders reduction

The difficulty;

- Homogeneous production of more than 10 tons
- **Evaluation** methods

Required RI levels 238 < 5 mBq/kg = 400 ppt²³²Th < 0.05 mBq/kg = 13 ppt

Preparation of 13 tons of $Gd_2(SO_4)_3 \cdot 8H_2O$

- Development with a rare earth company (Nippon Yttrium Co., Ltd.)
- Dedicated solvent extraction process line
 - 13 tons production in 7 months
 = 2 tons/month
- Evaluation of raw materials and batch-bybatch screening

Evaluation of 13 tons of $Gd_2(SO_4)_3 \cdot 8H_2O$

- All the 26 batches are evaluated with **ICP-MS** and **Ge detectors**
- **ICP-MS:** For long lifetime isotopes
- Established the method of separation and extraction of U/Th from high Gd concentration solution using resin to evaluate at ppt level

PTEP 2017 11 113H01 PTEP 2019 6 063H03

Fig. 6. Diagram of the whole procedure for the solid-phase extraction.

Evaluation of 13 tons of $Gd_2(SO_4)_3 \cdot 8H_2O$

- All the batches are evaluated with ICP-MS and Ge detectors
- Ge: For short lifetime isotopes

The highest sensitivity (lowest BG Ge) detectors in the world shared the work (Canfranc, Boulby, and Kamioka collaboration) PTEP under preparation

Ra-disk method

													•
Sample	1	Detector / Method	Activity (mBq/kg, 95% c.l.)							-			
	Laboratory	Detector / Method	2	38 U	23:	Th	and the second s	235 U	1.	1	1	1.40.00	1000
Dampie	Daboratory		238 U eq.	226 Ra eq.	232 Th eq.	228 Th eq.	235 U eq.	²²⁷ Ac/ ²²⁷ Th eq.	40 K	138La	176Lu	¹³⁴ Cs	137 Cs
		$requirement \rightarrow$	<5	<0.5	<0.05	< 0.05	<30	<30		-	+		•
190302	Canfranc	ge-Asterix	<9.8	<0.32	< 0.35	<0.29	<0.42	<0.92	<1.6	0.26 ± 0.1	<0.21	< 0.09	<0.09
190303	Canfranc	ge-Asterix	<8.4	<0.3	< 0.44	< 0.29	< 0.39	<0.81	<1.5	0.45 ± 0.09	0.16 ± 0.12	<0.08	< 0.09
190304	Canfranc	HADES	<88	<7.7	<2.6	<3.3	<5.0	<9.5	<10	1.34 ± 0.96	<1.28		<1.26
190305	Canfranc	ge-Asterix	<9.0	<0.34	<0.36	< 0.30	< 0.41	<0.90	<1.6	0.5 ± 0.1	0.14 ± 0.13	<0.09	<0.12
190401	Boulby	Belmont	< 5.6	<0.49	<0.67	<0.46	< 0.34	<1.83	<2.4	0.38 ± 0.11	<0.34	-	< 0.14
100501	Boulby	Merrybent	<12.6	<1.25	<0.92	<1.14	< 0.87	13.6 ± 2.0	<5.4	0.29 ± 0.20	1.8 ± 0.3	-	< 0.19
190201	Kamioka	Lab-C Ge, Ra Disk		<0.42	< 0.35	< 0.29				1	1		
100502	Boulby	Belmont	< 5.4	<0.49	<0.95	<0.48	< 0.36	<1.7	<2.8	<0.28	0.49 ± 0.08	-	<0.10
190002	Kamioka	Lab-C Ge	<22.3	<0.67	<0.44	<0.29	<8	7.9±0.8		-	0.68 ± 0.18		-
100601	Canfranc	ge-Asterix	<10.2	<0.52	<0.35	<0.41	< 0.50	<1.36	<1.9	<0.16	1.25 ± 0.14	<0.10	< 0.11
190001	Kamioka	Lab-C Ge, Ra Disk		<0.32	< 0.39	< 0.34	•	1.4					
100600	Canfranc	ge-Tobazo	<29	<0.49	<1.64	< 0.82	< 0.76	<1.85	<2.1	< 0.21	1.64 ± 0.20	<0.17	<0.14
190002	Kamioka	Lab-C Ge, Ra Disk		<0.28	<1.01	< 0.28	•	14.2				-	
190603	Canfranc	ge-Anayet	<30	<0.54	<1.20	< 0.82	< 0.67	1.3 ± 1.3	<1.8	<0.19	1.73 ± 0.16	<0.16	< 0.14
100604	Boulby	Belmont	< 9.80	< 0.47	< 0.61	< 0.50	< 0.45	<2.33	<2.45	<0.21	0.97 ± 0.11		< 0.08
10004	Kamioka	Lab-C Ge	<23.1	< 0.60	<0.43	<0.26	<3.6	1.2		*	1.43 ± 0.19		
and the second in	Boulby	Merrybent	<13.1	<0.84	<0.79	< 0.63	< 0.37	2.6 ± 0.6	<3.27	<0.29	1.23 ± 0.16		<0.13
190606	Kamioka	Lab-C Ge	<13.5	1.04 ± 0.38	<0.71	<0.82	<6.5	2.7 ± 1.2		*	0.74 ± 0.29	-	•
	Kamioka	Lab-C Ge, Ra Disk		<0.24	<0.71	<0.40	•	*		-		-	
190607	Canfranc	ge-Oroel	<7.2	<0.30	<0.79	<0.42	< 0.30	<0.96	<1.59	<0.18	<0.13	<0.12	<0.09
	Canfranc	ge-Asterix	<8.8	<0.53	<0.43	< 0.35	< 0.40	<0.88	<1.50	<0.14	<0.25	<0.08	< 0.09
190608	Kamioka	Lab-C Ge	<20.4	0.99 ± 0.30	<1.22	<0.71	<3.4	1.6		-	< 0.45		•
	Kamioka	Lab-C Ge, Ra Disk		< 0.49	< 0.43	< 0.55		-				-	
190709	Canfranc	ge-Oroel	<11.0	<0.45	<1.11	<0.50	< 0.37	2.4 ± 0.9	<1.5	<0.20	0.23 ± 0.13	<0.12	< 0.11
100102	Kamioka	Lab-C Ge	<11.4	< 0.55	<1.09	< 0.30	<3.0	<1.5			< 0.35	-	
190703	Canfranc	ge-Asterix	<8.4	<0.35	<0.51	<0.50	<0.45	1.8 ± 1.0	<1.7	<0.20	0.51 ± 0.13	<0.10	< 0.10
190704	Boulby	Belmont	< 9.8	<0.44	<0.66	<0.75	<0.29	<1.39	<2.01	<0.25	<0.18		<0.10
190705	Boulby	Merrybent	5.9 ± 2.6	< 0.50	<0.50	< 0.57	< 0.32	<1.31	<2.20	<0.19	1.6 ± 0.1	-	<0.08
190706	Boulby	Belmont	<9.5	<0.45	<0.66	0.53 ± 0.12	<0.28	<1.32	<2.09	<0.25	< 0.25	-	< 0.13
100100	Kamioka	Lab-C Ge	<7.3	< 0.64	< 0.39	< 0.59	<1.76	<0.83	<1.7	*	< 0.15	-	<0.20
190801	Canfranc	ge-Anayet	<28	0.39 ± 0.32	<1.5	<0.77	<0.80	<1.17	<1.44	<0.18	2.7 ± 0.2	<0.23	<0.18
190802	Boulby	Merrybent	<8.44	< 0.57	<0.56	<0.68	< 0.48	<1.18	<2.54	<0.17	4.71 ± 0.20		< 0.09
190803	Canfranc	ge-Asterix	<7	< 0.31	0.39 ± 0.21	0.55 ± 0.22	< 0.36	<0.74	<1.4	<0.09	3.5 ± 0.1	<0.08	<0.07
190804	Boulby	Belmont	<11	<0.46	0.67 ± 0.21	< 0.67	< 0.38	<1.98	<2.57	<0.20	4.60 ± 0.24	-	<0.10
190805	Canfranc	ge-Oroel	<9.3	< 0.52	0.53 ± 0.44	0.57 ± 0.40	< 0.44	<0.98	<1.18	<0.10	9.44 ± 0.10	<0.10	<0.09
100000	Kamioka	IPMU-P	<103	<1.6	<3.2	<4.9	<16	<7.0	<18		8.83 ± 0.82		<1.2
190806	Boulby	Merrybent	<8.09	<0.43	0.49 ± 0.11	1.27 ± 0.13	< 0.26	<1.23	<1.78	<0.14	9.35 ± 0.22	-	< 0.07
100000	Kamioka	IPMU-N	<93	<3.9	<3.3	<2.6	<19	<6.4	<65		5.5 ± 0.9		<1.4
100001	Canfranc	ge-Asterix	<8.6	<0.30	0.42 ± 0.27	0.37 ± 0.27	< 0.46	<1.20	<1.47	<0.15	4.85 ± 0.12	<0.10	< 0.13
190901	Kamioka	IPMU-P	<110	<2.3	<2.9	<2.1	<14.9	<12.2	<27	-	5.6 ± 0.7	-	<1.1
190902	Boulby	Belmont	< 5.52	<0.26	0.53 ± 0.10	0.63 ± 0.09	< 0.33	<1.22	<1.32	<0.10	8.78±0.18		< 0.05
	Kamioka	IPMU-N	<71	<4.9	<3.2	<2.5	<19	<8.0	<46		6.4 ± 0.9	-	<1.4
190903	Kamioka	IPMU-N	<69	<6.3	<4.0	<2.4	<17.6	<5.3	<32	-	5.4 ± 0.8	•	<1.0
190904	Boulby	Belmont	<10.80	<0.49	0.69 ± 0.22	0.65 ± 0.15	< 0.52	<2.12	<2.79	<0.20	6.41 ± 0.30	-	<0.09
190904	Kamioka	IPMU-N	<70	4.6 ± 1.6	<3.3	<2.4	<18	<5	34 ± 16		5.1 ± 0.8	•	<2.2
190905	Kamioka	Lab-C Ge	<6.7	<0.16	0.7 ± 0.2	0.7±0.2	8.8±1.9	<1.0	<1.4		6.6 ± 0.2	-	<0.1
190906	Kamioka	Lab-C Ge	<7.0	<0.19	1.09 ± 0.23	0.45 ± 0.14	6.0 ± 2.0	<0.53	<1.1		5.92 ± 0.21	-	<0.10
191001	Kamioka	Lab-C Ge	<5.2	<0.26	1.62 ± 0.24	0.55 ± 0.13	4.6 ± 1.6	<0.45	<1.13		5.57 ± 0.17		0.13 ± 0.08
200101	Kamioka	IPMU-N	<87	<2.8	<4.0	<2.5	<18	<4.5	<67	-	5.2 ± 0.9	-	<1.2
200102	Kamioka	IPMU-P	<122	<2.5	<3.1	<3.3	<16	<7.9	<25	+	7.0±0.8	-	< 0.98
200103	Kamioka	IPMU-N	<114	<2.4	<7.7	<2.4	<17	<4.1	<19		< 0.91		<1.0
200104	Kamioka	IPMU-P	<95.1	<2.8	<3.0	<2.8	<15	<9.0	<31		< 0.82		< 0.64

32

The Gd-loading Jul. 14 – Aug. 18, 2020 The pure water in the SK tank was taken from the top and returned from the bottom in 0.02% Gd₂(SO₄)₃ solution (=0.01% Gd = 0.026% Gd₂(SO₄)₃·8H₂O) It took 35 days to replace 50,000 tons of water at 60 m^3/h One batch: Weighing hopper 8.2 kg of $Gd_2(SO_4)_3$.8H₂O Circle feeder + 768 L of SK water Dissolving system 12m³/h Repeated every 30 minutes for 24 hours for 35 consecutive days 0.1% AnionX Cation XTOC Pretreatment system Return 0% water filter 48m³/h Just after mixing 60m³/h **10minutes later** SK water system 33 Temp. control Cation X AnionX UV Temp. contro unit B 0.02% pump TOC HE supply Membrane pump degasifie 60m³/h SK tank return

pumps

bottom

Gd concentration check during the loading

Sampled water directly from various positions in the tank, and its conductivity was measured

Spallation neutron for Gd check

 Simply selected μ-induced spallation neutrons were used for Gd concentration monitoring

	Isotope	Half-life (s)	Decay mode	$(\times 10^{-7} \mu^{-1} g^{-1} cm^2)$	$(\times 10^{-7} \mu^{-1} g^{-1} cm^2)$	Primary process
	n			2030		
	¹⁸ N	0.624	β^{-}	0.02	0.01	¹⁸ O(n,p)
	^{17}N	4.173	$\beta^{-}n$	0.59	0.02	¹⁸ O(n,n+p)
nociz	¹⁶ N	7.13	$\beta^{-}\gamma$ (66%), β^{-} (28%)	18	18	(n,p)
	¹⁶ C	0.747	$\beta^{-}n$	0.02	0.003	$(\pi^{-},n+p)$
	¹⁵ C	2.449	$\beta^{-}\gamma$ (63%), β^{-} (37%)	0.82	0.28	(n,2p)
	^{14}B	0.0138	$\beta^{-}\gamma$	0.02	0.02	(n,3p)
	¹³ O	0.0086	β^+	0.26	0.24	$(\mu^{-},p+2n+\mu^{-}+\pi^{-})$
	¹³ B	0.0174	β^{-}	1.9	1.6	$(\pi^{-},2p+n)$
	¹² N	0.0110	β^+	1.3	1.1	$(\pi^{+}, 2p+2n)$
	${}^{12}B$	0.0202	β^{-}	12	9.8	$(n,\alpha+p)$
	^{12}Be	0.0236	β^{-}	0.10	0.08	$(\pi^-,\alpha+p+n)$
	^{11}Be	13.8	β^{-} (55%), $\beta^{-}\gamma$ (31%)	0.81	0.54	$(n,\alpha+2p)$
	¹¹ Li	0.0085	$\beta^{-}n$	0.01	0.01	$(\pi^+, 5p+\pi^++\pi^0)$
	^{9}C	0.127	β^+	0.89	0.69	$(n,\alpha+4n)$
	⁹ Li	0.178	$\beta^{-}n$ (51%), β^{-} (49%)	1.9	1.5	$(\pi^-,\alpha+2p+n)$
	⁸ B	0.77	β^+	5.8	5.0	$(\pi^+, \alpha+2p+2n)$
	⁸ Li	0.838	β^{-}	13	11	$(\pi^-,\alpha^++^2H^+p^+n)$
	⁸ He	0.119	$\beta^{-}\gamma$ (84%), $\beta^{-}n$ (16%)	0.23	0.16	$(\pi^{-},^{3}H+4p+n)$
	¹⁵ O			351		(γ,n)
List of spallation products				773		(γ, \mathbf{p})
				13		(n,3n)
Sliand Reacom	¹⁴ N			295		$(\gamma, n+p)$
	14C			64		(n,n+2p)
Phys Rev C 89 045801 (2014)	¹³ N			19		$(\gamma, ^{\circ}H)$
1 11 3. 1 201 1 200	¹³ C			225		$(n,^{2}H+p+n)$
	**C			792		(γ, α)
	110			105		$(n,\alpha+2n)$
	10 m			174		$(n,\alpha+p+n)$
	10 0			1.0		$(n,\alpha+3n)$
	10 p.			11		$(n,\alpha+p+2n)$
	- <u>Бе</u> 9 р.			24		$(n,\alpha+2p+n)$
	De			2015	50	(n,2α)

- Michel decay-e $\sim 2.2 \mu s$
- Neutron thermalization $\sim 4.3 \mu s$
- PMT after pulses 10~20µs

35

Gd concentration check after loading

• Neutron capture time is sensitive to Gd concentration.

$\rm Am/Be$ neutron source was deployed in SK

Am/Be neutron source 100~200 neutrons/s

> ²⁴¹Am → ²³⁷Np + α ⁹Be + α → ¹³C* + n (2-6 MeV)

 $^{13}C^* \rightarrow ^{12}C + \gamma (4.43 \text{ MeV})$

8 BGO Crystals

Z=+12m

Z=0m

220 200

> 180 160

120

100

0.0001

0.001

0.13

37

0.1

Gd concentration [% weight]

0.01

constant

Neutron capture time

Uniformity check by spallation neutron

Water transparency and energy scale

N.B. Cut efficiencies are not optimized yet (especially for SK-VI) 39

Next Step

As the initial Gd-loading looks fine!

- Increase Gd concentration to 0.03%
 - Planned in May-June 2022.
 - Neutron capture efficiency will increase to 75%.
 - 26 tons of ultra-pure Gd₂(SO₄)₃·8H₂O are being produced.
 - 18tons are ready to go
- Long term observation
 - Planned from 2022 to 2027.
 - Expected number of SRN events is 5~13 for the five years.

Gadolinium Sulfate

Expected sensitivity of SK-Gd with 0.03%

Assume atmospheric background is the same

Further improvement: To what extent can we differentiate neutron capture signals from atmospheric interactions?

Supernova burst neutrino

Super-Kamiokande can point the galactic SN direction via ES Inverse Beta Decay reaction (IBD) ~90% $\bar{\nu_e} + p \rightarrow e^+ + n$ The direction of positron does not reflect the direction of the neutrino Elastic Scattering interactions (ES) ~5% $\nu + e^- \rightarrow \nu + e^-$

The electron keeps the neutrino direction information.

42

Role of SK in Multi-messenger astronomy

Realtime supernova monitoring

SK's SN monitoring system **"SNWatch.**" Astropart. Phys. 81 (2016)

- Quick online analysis code, reconstructing the events and fitting SN direction
- In case the event burst matches the criteria (uniformity of the events in the detector, number of events), an alarm is sent to Super-Kamiokande SN experts.
 - The criteria are determined so that we would have 100% SN detection efficiency at the Large Magellanic Cloud.

Quick IBD tagging in SNwatch

- From the reconstructed events, "prompt-like" candidates (events with E > 7 MeV) and "delayed-like" candidates (events with E < 7 MeV) are separated.
- Only the time and space correlation between "prompt-like" and "delayed-like" candidates an IBD candidate selection can be built:
 - Pair of events with $\Delta T < 500~\mu\,sec,$ and $\Delta R < 300~cm$

This selection algorithm tags ~33% IBD events with the current Gd loading.

Gd

SNwatch pointing accuracy with 0.01% Gd

• The preliminary results show 10~30% improvement between 2.5 and 25 kpc thanks to the Gd-loading.

Alert release time Fast alarm is critical to observe the SN burst light.

- Up to recently, it was taking a long time for SK to release an alarm;
 - Event reconstruction ~3 min for 10 kpc SN (~10 min for 3 kpc)
 - Experts meeting to decide to release an alarm and send the alarm.
- \rightarrow On average, ~1h was needed to send the alarm(and miss 30% of optical SNe.)

- Software and algorithm upgrades using multi-threading
 - Event reconstruction: <1 min for 10 kpc SN (~5 min for 3 kpc SN)
 - Further quick Healpix-based (from WMAP, Plank) SN direction finder is under investigation.
 - \rightarrow Preliminary results indicate ~2 sec for 10 kpc SN (<5 sec for any SN)
 - Automated alarm shortly after the SN direction reconstruction
- \rightarrow The alarm is expected to be released in about 1 minute following the Galactic SN. (Preliminary)

SK Supernova alert on GCN Notice

IBD tagging has a low BG contamination

Any burst of IBD uniformly distributed in the detector should be a clear SN signal.

- Since December 13th, 2021, an automated notice process activated in SNwatch.
- In addition to the usual SNwatch criteria, if the number of IBD tagged events is > 10, the notice is distributed automatically to the astronomer community.
- The alert can be received on GCN (The Gamma-ray Coordinates Network) with the same framework as other GCN notices; GRB, GW, and high energy neutrino alerts.

A dummy (test) alert is published for the test every month (on 1st day of the month).

For more details about SK_SN Notice, refer to https://gcn.gsfc.nasa.gov/sk_sn.html

The 10 IBD threshold was selected to ensure100% detection efficiency for core-collapse SNe up to LMC

<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	
TITLE: GCN/SK_SN NOTICE	
NOTICE_DATE: Mon 01 Nov 21 00:00:14 UT	
NOTICE_TYPE: SK_SN TEST	
TRIGGER_NUMBER: SK_SN 10030	
SRC_RA: 254.4000d {+16h 57m 36s} (J2000),	
254.6087d {+16h 58m 26s} (current),	
253.9223d (+16h 55m 41s) (1950)	
SRC_DEC: +31.2600d {+31d 15' 36"} (J2000),	
+31.2275d {+31d 13' 39"} (current),	
+31.3360d {+31d 20' 10"} (1950)	
SRC_ERROR68: 0.64 [deg radius, stat-only, 68% containment]	
SRC_ERROR90: 0.91 [deg radius, stat-only, 90% containment]	
SRC_ERROR95: 1.04 [deg radius, stat-only, 95% containment]	
DISCOVERY_DATE: 19518 TJD; 304 DOY; 21/10/31 (yy/mm/dd)	
DISCOVERY_TIME: 82816 SOD [23:00:16.74] UT	
N_EVENTS: 64124 (Number of detected neutrino events)	
ENERGY_LIMIT: 7.00 [MeV] (Minimum energy of the neutrinos)	
DURATION: 10.0 [sec] (Collection duration of the neutrinos)	
DISTANCE: 2.16 - 2.95 [kpc] (low - high as SN1987A like SNe)	
COMMENTS: The position error is statistical only, there is no systematic added.	
COMMENTS: All numbers are preliminary.	
COMMENTS:	
COMMENTS: NOTE: This is a TEST Notice.	
COMMENTS:	
An example of SK_SN Test Notice	\$
	,

Even earlier alarm: Si burning signal

Pre-Supernova Stars

The neutrino emission increases significantly as a massive star approaches the core-collapse Supernova. After the ignition of Carbon burning starts, the electron-positron annihilation process generating thermal neutrinos becomes the star's dominant form of cooling.

 $e^+ + e^- \rightarrow \nu_x + \bar{\nu}_x$

The last stage of these stars before the core-collapse is the **Si-burning**. Neutrinos emitted at this stage have an average energy of 1.85 MeV.

Although the pre-Supernova neutrinos have lower energies than Supernova neutrinos, Si-burning neutrinos exceeding the IBD threshold could be detected in SK-Gd.

 \rightarrow possibility of creating an alternative Supernova alarm

A. Odrzywolek et al., Astropart. Phys. 21 (2004) 303

Si burning models

• Odrzywolek et. al.

Pair

$$e^+ + e^-
ightarrow
u_lpha + \overline{
u}_lpha$$

 $E\overline{v_e}$ spectra in SK over the last 10 hours prior to the CCSN \rightarrow

• Patton et. al.

Patton et al. 2017 ApJ 840 2

- $\beta^{\pm} \text{ decay} \qquad A(N, Z) \to A(N-1, Z+1) + e^{-} + \overline{\nu}_{e}$ $A(N, Z) \to A(N+1, Z-1) + e^{+} + \nu_{e}$
- $e^+/e^- \text{ capture } A(N, Z) + e^- \to A(N+1, Z-1) + \nu_e$ $A(N, Z) + e^+ \to A(N-1, Z+1) + \overline{\nu_e}$

Plasma Photoneutrino Pair $Z) + e^{+} \rightarrow A(N - 1, Z + 1)$ $\gamma^{*} \rightarrow \nu_{\alpha} + \overline{\nu}_{\alpha}$ $e^{\pm} + \gamma \rightarrow e^{\pm} + \nu_{\alpha} + \overline{\nu}_{\alpha}$ $e^{+} + e^{-} \rightarrow \nu_{\alpha} + \overline{\nu}_{\alpha}$

Backgrounds

Accidental coincidences:

The primary BG. Intrinsic background comes from radioactive decays, dark noise, and uncorrelated events close in time and distance.

Reactor and geoneutrinos:

Background due to active Japanese nuclear reactors

Radioactive Contaminations:

With the Gd-loading, radioactive impurities are distributed in the detector. ²³⁸U, ²³²Th, and ²³⁵U contribute ¹⁸O(α ,n)²¹Ne* and ¹⁷O(α ,n)²⁰Ne*

Event selection with WIT

 The pre-supernova alert system is integrated into an independent trigger in SK called Wideband Intelligent Trigger. WIT is a system designed to extend the sensitivity of SK to low energy events using parallel computing to reconstruct vertices in realtime, discarding events that are not well reconstructed or very close to the walls of the detector.

Physics Procedia 61 (2015) 666

2 BDTs for event selection

At first, BDT_{online} is created as a pre-selection using only ΔR and ΔT in order to carry less events through the data processing, then final BDT using angular distribution of hits, reconstructed energy and quality, and distance from detector wall is created.

Sensitivity calculation for SK-VI

- Remaining BG after selection ~ 0.1 events/hour
- Significance are evaluated $p = P(N_{events} \ge N_{BG}) = \sum_{n=N_{events}} Pois(n; N_{BG})$

 3σ significance alarm (to SK collaboration) for an 8hours window was activated on Oct. 21, 2021.

SK-VI sensitivity to Betelgeuse

https://commons.wikimedia.org /wiki/File:Orion_3008_huge.jpg

α Ori ⁻

Evolution of the number of IBD(Top) and the significance level (Bottom) in SK-IV (with 0.01% Gd) over the last 50 hours before the core-collapse for massive stars at d = 200 pc.

56

SK-VI's monitoring range

SK is watching…

THE ASTROPHYSICAL JOURNAL, 899:153 (12pp), 2020 August 20

Mukhopadhyay et al.

Figure 2. Illustration of nearby ($D \le 1$ kpc) core collapse supernova candidates. Each star's spectral type, name, mass, and distance is shown in labels. See Table A1 for details and references.

Comparison with KamLAND

Lower energy thresholds and lower background than SK Fewer events than SK, as it is 20 times smaller than SK

Number of events

K. Asakura et al 2016 ApJ 818 91

Similar sensitivity

The pre-supernova alert system in KamLAND works with a fixed background rate of 0.071–0.355 events/day, depending on the reactor activity in Japan, and integrates selected events over a 48 hours time window.

SK+KamLAND alert in preparation

- A combination of results of both detectors could extend detection ranges and early warnings for the alarms. At least, coincidence alert increases the significance.
- \rightarrow MOU among KamLAND and SK on pre-SN alarm is in preparation.

"If a significant number of anti-neutrinos candidates are seen in both KL and SK, and if they are consistent with expectations from pre-SN, KL and SK will try to make an announcement to the community via such publicly accessible services such as GCN."

SK+KamLAND coincidence alert will be sent to GCN soon.

SK-VII (0.03% Gd) sensitivity

Conclusion

- Super-Kamiokande has been running since 1996 and achieved a world-leading sensitivity to the DSNB flux at 90% CL, comparable to the fluxes of several realistic models.
- SK has recently moved to the SK-Gd phase, achieving a concentration of 0.01%, and to be upgraded to 0.03% soon. The enhanced neutron tagging capabilities will allow us to set meaningful constraints on astrophysical observables with the realistic prospect of a ground-breaking discovery.
- SK continuously monitors the detector events to probe any burst indicating a supernova. The 0.01% Gd neutron tagging improved SN pointing accuracy by 0.6 deg at 10 kpc (Nakazato model). Thanks to the automated GCN notice system implementation, the delay before sending an alarm to astronomers is expected to be ~1 minute for the SNe in our galaxy.

Conclusion (cont'd)

- Neutrinos from pre-Supernova stars, with an average energy of 1.85 MeV in the Si-burning phase can be detected in SK-Gd for the ranges of about 600 parsecs;
- Their detection can also give early warnings for potential Supernova events. Betelgeuse, for example, would have a warning notice of 8 hours before the explosion. The Pre-Supernova alert system has been running in Super-Kamiokande since October 22nd. Future phases of Gd loading will extend the detection ranges and increase alert hours.