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§ Michel electron analysis 
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– Missing energy studies 
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– Analysis current status 
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LOW-ENERGY ELECTRONS STUDIES 
§ DUNE goal is to measure CP-violation via νe appearance 

(νμ à νe)
– To measure νe appearance we need to select electron 

showers in LAr TPC, and reconstruct their energy
§ Important to show that the detector can use the topological 

/ calorimetric information provided by the TPC to identify a 
specific topology [Michel electrons]

§ Reconstruct the low-energy electrons and produce their 
visible energy spectrum

§ Ideal to study detector's response to electrons in the tens 
of MeV energy range 

– Useful for the search of low energy events e.g
supernova

§ The goal is to deliver Michel analysis algorithm to use on 
DUNE-FD Day 1
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INTRODUCTION TO DUNE 
§ The Deep Underground Neutrino Experiment (DUNE) is a future accelerator-

based multi-detector long-baseline neutrino oscillations experiment.

§ Major DUNE goals:
– Neutrino Oscillation Physics 
– Nucleon Decay
– Supernova burst physics & astrophysics
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INTRODUCTION TO DUNE 
§ The Deep Underground Neutrino Experiment (DUNE) is a future accelerator-

based multi-detector long-baseline neutrino oscillations experiment.

§ New neutrino beam at Fermilab,1300 km baseline 
§ Multiple technologies for the Near Detector (ND) at Fermilab
§ 70 kton Liquid Argon Time Projection Chamber (LArTPC) Far Detector (FD) at Sanford 

Underground Research Facility, South Dakota, 1.5 km underground 
§ Excavation started in 2017, begin taking data in late 2020s- early 2030s 
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PROTODUNE SP AND DP AT CERN

§ Single-phase (SP) and dual-phase 
(DP) DUNE prototype LArTPCs at 
CERN

§ 770 t LAr mass each 
§ Exposed to H2 (DP) and H4 (SP) test 

beams at CERN, momentum 
dependent beam composition contains 
e, K± , μ ±, p, π±

§ Also collected cosmic ray data
§ ProtoDUNE-II is currently being 

commissioned 
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PROTODUNE-SP 
§ Active Volume: 6m (H) x 7m (L) x 2 x 3.6m (W) 
§ Central Cathode Plane Assembly (CPA) :

– 3.6 m drift distance @180 kV
– 500 V/cm field in drift volume 

§ Anode Plane Assembly (APA): 
– 3 APAs on each side 
– Each APA module: 6m high, 2.3m wide 
– Two induction planes and one collection plane 

§ Cold electronics: directly attached to the top of the APA (2560 wires/APA, 15360 total wires) 
§ Photon detectors (PDS): 3 designs integrated into APA frame bars 
§ Cryogenic Instrumentations outside of field cage: measure argon purity, temperature, liquid level and tag 

cosmic rays 
§ First papers from ProtoDUNE-SP are published e.g JINST 15 (2020) 12, P12004
§ ProtoDUNE-SP Phase-I operated Sept. 2018 – July 2020, Phase-II data taking under preparation
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HOW LARTPC WORKS
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HOW LARTPC WORKS
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HOW LARTPC WORKS

Neutrino 
interaction 
inside TPC
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HOW LARTPC WORKS

Secondary 
charged particles 
ionize atoms 
along their way
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HOW LARTPC WORKS

Electrons drift 
towards anode 
due to applied 
electric field
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HOW LARTPC WORKS

Electrons drift 
towards anode 
due to applied 
electric field
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HOW LARTPC WORKS

Electrons 
arrive at 
anode 
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HOW LARTPC WORKS

Anode has 3 
wire planes

First induction 
plane
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HOW LARTPC WORKS
First induction 
plane

Anode has 3 
wire planes
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HOW LARTPC WORKS

Second plane 
wires are 
perpendicular to 
first plane wires

Second 
induction 
plane
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HOW LARTPC WORKS

Second plane 
wires are 
perpendicular to 
first plane wires

Second 
induction 
plane
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HOW LARTPC WORKS
Collection 
plane
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HOW LARTPC WORKS
Collection 
plane
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• Wire planes give 2D position 
information
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HOW LARTPC WORKS
Scintillation light is 
collected by PMTs 
that give absolute 
time for the 
interaction
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• The third dimension is 
obtained by combining 
timing information (t0) 
with drift velocity (vd) → 
hence is called “Time 
projection chamber”



DUNE SENSITIVITY AND MEASURING DELTA-CP
§ CP violation measured as a difference of neutrino and anti-neutrino oscillation 

probabilities.

§ Calibrate Far and Near detector visible energy to 2% to control systematics at 
the level needed to support neutrino oscillation measurements 

§ Precision of energy reconstruction is required for 
– Early DUNE physics milestone is to reduce δCP uncertainty below 200 (at δCP = -900)
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ACCURATE RECONSTRUCTION OF VISIBLE 
ENERGY
§ Perform oscillation analysis 

– Reduce systematics in lepton and neutrino interaction measurements
§ Visible energy is obtained by leptonic + hadronic energy components 

– Goal is to achieve variation in visible energy to be <2% for DUNE sensitivity 
studies 

§ Working on leptonic part of the energy by:
– Serving as Electromagnetic Shower working group convener at ProtoDUNE
– Working on low-energy electron shower reconstruction 
– Developing calibration schemes for high energy electrons 

§ Hadronic energy component can be understood by neutrino interaction 
measurements
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MICHEL ELECTRON ANALYSIS 



MICHEL ELECTRONS

§ Michel electrons are electrons produced from the decay of muons (0-50 MeV)
§ Common channels (in ProtoDUNE):

– Muon decay: μ+→ 𝑒+ 𝜈̅𝜇𝜈𝑒 (80%)
– Muon capture: μ −→ 𝑒−𝜈𝜇𝜈̅𝑒𝑛γ (20%)

§ Unique features of this analysis:
– data-driven determination

of the recombination correction
– evaluation of the missing Michel energy
– comparison of the electron energy calibration based on muon derived 

calibration corrections with that based on the Michel electron true energy
– characterization of the electron energy resolution
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ANALYSIS FLOW   
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EVENT SELECTION 
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EVENT SELECTION 
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EVENT SELECTION 
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EVENT SELECTION 
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EVENT SELECTION 
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EVENT SELECTION 

§ Select candidate muon tracks with > 75 cm length

Muon selection 
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EVENT SELECTION 

§ Select candidate muon tracks with > 75 cm length
§ Minimum hit time > 200 ticks

– 1 time tick = 500 nsec

Muon selection 
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EVENT SELECTION 

§ Select candidate muon tracks with > 75 cm length
§ Minimum hit time > 200 ticks 
§ Maximum hit time < 5800 ticks

Muon selection 
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EVENT SELECTION 

§ Nearby hit count > 5 & < 40

Michel selection 
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EVENT SELECTION 

§ Nearby hit count > 5 & < 40
§ Closest reco shower distance < 10 cm

Michel selection 
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EVENT SELECTION 

§ Nearby hit count > 5 & < 40
§ Closest reco shower distance < 10 cm
§ Angle between muon and Michel < 1300

Michel selection 
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EVENT SELECTION 

§ Nearby hit count > 5 & < 40
§ Closest reco shower distance < 10 cm
§ Angle between muon and Michel < 1300

§ Angle between Michel and collection plane wires 
> 100 and < 1700

Michel selection 
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MICHEL HITS OPTIMIZATION 

§ Form a cone that contains candidate Michel electron hits 
§ Look for the nearby charge deposition around the muon 

end position 
§ Optimize the parameters cone length (d) and angle (θ) to 

maximize Michel hit purity and hit completeness matrices 
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SYSTEMATIC UNCERTAINTY STUDIES 

§ Evaluated the impact of various systematics on the Michel energy spectrum 
§ The uncertainties are expressed with respect to the mean energy of the 

reconstructed Michel electron energy spectrum  
§ Some of the significant uncertainties are listed in the table 
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SPACE CHARGE SYSTEMATICS 

§ Reperformed the analysis from the MC 
sample generated with SCE OFF 

§ Compared Michel energy spectra with 
and without space charge 

§ The percentage difference in the mean of 
the distributions are taken to be the 
systematic uncertainty due to space 
charge 
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POSITRON VERSUS ELECTRON SYSTEMATICS 

§ Idea is to see whether Michel electrons 
behave differently than positron 

§ Plotted the true energy spectrums of 
positrons and electrons 

§ The difference in the mean of the 
distributions are taken to be the 
systematic uncertainty due to electron vs 
positron systematic 
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RECOMBINATION FACTOR SYSTEMATICS 

§ Evaluated the effective Michel 
recombination factor from MC sample 
using the modified box model 

§ This agrees to the recombination factor 
value used in the simulation within 2%

§ The value is taken to be the systematic on 
recombination factor 
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HIT RECONSTRUCTION SYSTEMATICS 

§ Considered the number of hits closer to 
the muon end position 

§ Calculated the difference between data 
and MC distribution 

§ The value is taken to be the systematic on 
the hit reconstruction 
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CHARGE TO ENERGY CALIBRATION 
§ Performed energy calibrations to extract Michel electron energy spectrum using 

modified box model*

§ dQi is the reconstructed measured charge deposited on a hit

§ Wion is the work function for ionizing an argon atom

§ Ccalib represents the calibration constant that converts ADC to MeV

§ Cnorm normalizes the dQ/dx values to the dQ/dx at the anode plane

§ ε(Xi), ε(Yi,Zi) are correction factors that are meant to remove the residual nonuniformities in the readout after correcting for all known effects (space 
charge, electron lifetime, etc). 

§ R = 0.6441 is recombination factor that accounts for recombination effects in the detector 

§ Calculation follows the same calibration procedure developed using the cosmic 
muons and applied to the beam data

– “ProtoDUNE performance paper”: https://iopscience.iop.org/article/10.1088/1748-0221/15/12/P12004

45 [*] JINST 8, P08005 (2013)

https://iopscience.iop.org/article/10.1088/1748-0221/15/12/P12004


MICHEL ELECTRON 
RECONSTRUCTION

§ Simulation agrees very well with the data 
– Relative energy scales of data and Monte 

Carlo events agree to within 2%
§ True versus reconstructed Michel energy plot 

shows a linear agreement

Muon-based method 
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MICHEL ELECTRON 
RECONSTRUCTION

§ Here, we match the shape of the reconstructed 
Michel charge directly with the true Michel 
energy smeared with a gaussian function
– Optimize the gaussian uncertainty and 

charge to energy scale factor to find the best 
value of χ2/ndf between both distributions 

§ Simulation agrees very well with the scaled data 
– Relative energy scales of data and Monte 

Carlo events agree to within 3%
§ True versus reconstructed Michel energy plot 

shows a linear agreement

True-Michel based method
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MISSING ENERGY STUDIES 

§ Investigated the source of missing energy due to 
hit reconstruction threshold
– Applied at the signal processing level 

§ Since Michel electrons are already low in 
energy, losing a few hits significantly impact the 
final energy spectrum

§ We lose 11% energy due to hit reconstruction 
threshold.   

Hit reconstruction threshold 
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MISSING ENERGY STUDIES 

§ The other major source of missing energy 
are the hits outside the cone

§ We introduce a lot of unwanted hits if we 
elongate the cone 

§ We lose 13% energy due to this effect 

Hit incompleteness 
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FRACTIONAL ENERGY DIFFERENCE 

§ Fractional energy difference is defined as 

§ The Δε per event peaks at zero when we add 
both missing energy contributions to the 
simulation as expected 
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MICHEL ENERGY RESOLUTION 

§ Michel resolution 
parametrization: 
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MICHEL ELECTRON PAPER STATUS 

§ We have drafted a technical note on this 
analysis 

§ The paper draft has been prepared that 
has completed its editorial board review

§ Will soon be sent out to the entire DUNE 
collaboration for another round of review 
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Paper draft 



SUMMARY 

§ Developed Michel electron selection, reconstruction, and energy calibration tools 
for ProtoDUNE-SP
– Achieved 95% event selection purity

§ Identified the major source of missing energy in the spectrum
– Hit reconstruction threshold 
– Energy outside Michel reconstructed cone 

§ Presented Michel electron energy spectrum with two consistent methods 
§ Presented the Michel electron resolution 
§ A paper draft is under review within the collaboration

– Stay tuned!
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BACKUP SLIDES 
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PROTODUNE-SP—TERTIARY CERN SPS BEAM

§ Tertiary CERN SPS Beam
– Beam coming from Super Proton Synchrotron 

§ CERN SPS Beam: 
– Protons from 400 GeV CERN SPS 
– Incident on Beryllium Target 
– Secondary Beam is 80 GeV 
– Incident on secondary target 
– 0.3-7 GeV H4-VLE Beam
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LOW-ENERGY ELECTRON STUDIES AT DUNE 
FAR DETECTOR 

§ Developing selection and reconstruction 
framework to isolate muons and its Michel 
electrons to calibrate electron energy scale at 
Far Detector (10 kt module).
– Achieved 80% event purity
– True Michel efficiency is 31%
– My plan is to deliver Michel analysis 

algorithm for use in Far Detector on day 
one
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PASSING RATE AS A FUNCTION OF TRUE 
MICHEL ENERGY 
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