Astrophysical Neutrinos

elusive and powerful probes of the Universe

Shirley Li UC Irvine

Neutrino University, June 2023

The Optical Sky

The Microwave Sky

The Gamma Ray Sky

The Neutrino Sky?

The Neutrino Sky

Neutrinos from Hot, Dense Environments

For example... the core of the Sun: temperature: 27 million degrees F density: 160 g/cm^3

$$\begin{array}{l} p+p \rightarrow 2 \mathrm{He} + e^+ + \nu_e \\ e^+ + e^- \rightarrow \nu + \overline{\nu} \\ \pi \rightarrow \mu + \nu_\mu \end{array}$$

Many particles are produced, neutrinos escape more easily

Solve Mysteries in Astro- and Particle Physics

Solar neutrinos may help solve solar metallicity problem

Solve Mysteries in Astro- and Particle Physics

Solar neutrinos were one piece to discover neutrino oscillation, which proves that neutrinos have masses

This Talk:

Supernova neutrinos

Core-collapse Supernovae

The death of Massive Stars (> $8 M_{\odot}$)

Core-collapse Supernovae

The death of Massive Stars (> $8 M_{\odot}$)

Huge Amount of Energy and Neutrinos

SN 2013cu (iPTF13ast)

SDSS, prior to supernova explosion

Palomar

Gal-Yam et al. 2014; Nature, May 22, 2014

Among the most energetic events in the Universe

Optically, they can outshine the entire host galaxy for weeks

Release 10⁴⁶ J of energy >> Sun traveling at the speed of light

Mostly in neutrinos

We can detect the neutrinos if it's nearby!

It Happened Once! Supernova 1987A

Provide Information on Nucleosynthesis

15/30

Provide Information on the Remnant

What is the fate of SN 1987A? We still don't know!

Literature Limits on SN 1987A						
Frequency (Hz)	Flux Density (erg s ⁻¹ cm ⁻² Hz ⁻¹)	Epoch ([YYYY–]YYYY)	Instr. ^a	Resolution ^b	Conf. Level ^c	References
$(0.076 - 8.642) \times 10^9$	$(5.1-0.17) \times 10^{-23}$	2013-2014	MWA, ATCA	U		Callingham et al. (2016)
1.7×10^{9}	$0.3 imes 10^{-26}$	2008	VLBI	R	$3-\sigma$	Ng et al. (2011)
9×10^9	$0.3 imes 10^{-26}$	1996 ^d	ATCA	S	$3-\sigma$	Ng et al. (2008)
36.2×10^{9}	$0.3\pm0.2 imes10^{-26}$	2008	ATCA	S	E	Potter et al. (2009)
44×10^{9}	$2.2 imes 10^{-26}$	2011	ATCA	S	E	Zanardo et al. (2013)
94×10^9	1×10^{-26}	2011	ATCA	S	$2-\sigma$	Lakićević et al. (2012b)
$(0.6-4.3) \times 10^{12}$	$(50-150) \times 10^{-26}$	2012	SPIRE, PACS	U		Matsuura et al. (2015)
$(12-83) \times 10^{12}$	$(1.0-76) \times 10^{-26}$	2003-2015	MIPS, IRAC	U		Arendt et al. (2016)
26×10^{12}	$0.34 imes 10^{-26}$	2005	T-ReCS	R	$3-\sigma$	Bouchet et al. (2006)
29×10^{12}	$0.32 imes 10^{-26}$	2003	T-ReCS	R	E ^e	Bouchet et al. (2004)
$(0.5-1.5) \times 10^{19}$	$(1.9-0.6) \times 10^{-31}$	2010-2011	IBIS	U		Grebenev et al. (2012)
$(2.4-24.2) \times 10^{23}$	$(2.2-0.22) \times 10^{-36}$	2008-2014	LAT	U		Ackermann et al. (2016)
$(2.4-24.2) \times 10^{26}$	$(2.8-0.04) \times 10^{-40}$	2003-2012	HESS	U		H.E.S.S. Collaboration et al. (2015)

Alp *et al.*, 2018

Provide Information on the Remnant

What is the fate of SN 1987A? We still don't know!

High angular resolution ALMA images of dust and molecules in the SN 1987A ejecta

PHIL CIGAN,¹ MIKAKO MATSUURA,¹ HALEY L. GOMEZ,¹ REMY INDEBETOUW,² FRAN ABELLÁN,³ MICHAEL GABLER,⁴
ANITA RICHARDS,⁵ DENNIS ALP,⁶ TIM DAVIS,¹ HANS-THOMAS JANKA,⁴ JASON SPYROMILIO,⁷ M. J. BARLOW,⁸ DAVID BURROWS,⁹
ELI DWEK,¹⁰ CLAES FRANSSON,¹¹ BRYAN GAENSLER,¹² JOSEFIN LARSSON,⁶ P. BOUCHET,^{13,14} PETER LUNDQVIST,¹¹
J. M. MARCAIDE,³ C.-Y. NG,¹⁵ SANGWOOK PARK,¹⁶ PAT ROCHE,¹⁷ JACCO TH. VAN LOON,¹⁸ J. C. WHEELER,¹⁹ AND GIOVANNA ZANARDO²⁰

images. That dust peak, combined with CO and SiO line spectra, suggests that the dust and gas could be at higher temperatures than the surrounding material, though higher density cannot be totally excluded. One of the possibilities is that a compact source provides additional heat at that location. Fits to the far-infrared-

Cigan et al., 2019

Provide Information on the Remnant

We can directly measure remnant formation using neutrinos!

Li *et al.*, 2020

Provide Information on ν Properties

Neutrino-neutrino collider

Chang *et al.*, 2022

Provide Information on BSM

Could produce light dark matter, milli-charged particles, axions, ...

Chang *et al.*, 2018

Ongoing Efforts

Examples...

Li et al., 2023

High-energy astrophysical neutrinos

Cosmic Rays

A one-hundred-year puzzle – where are they from?

PDG, 2022

Regions with high matter density or radiation fields

р

р

е

protons (**p**), electrons (**e**) acceleration

Neutrinos as Cosmic Messengers

50 m

IceTop

IceCube

bedrock

Amundsen–Scott South Pole Station, Antarctica A National Science Foundationmanaged research facility

IceCube Laboratory Data from every sensor is collected here and sent by satellite to the IceCube data warehouse at UW-Madison

> Digital Optical Module (DOM) 5,160 DOMs deployed

5,160 DOMs de in the ice

2450 m

1450 m

2820 m

IceCube Has Detected Astro v

But... Diffuse Flux...

All sky, uniform in direction fluxes

Pointing does NOT obviously help to find the sources

Promising Sources

IceCube, 2022

Promising Sources

IceCube, 2022

Provide Information on Particle Properties

Neutrino-matter interaction

Neutrino decay

Bustamante *et al.*, 2017

Song *et al.*, 2020

Conclusions

Conclusions

Conclusions

