How Could Neutrinos Have Mass?

K.S. Babu
Oklahoma State University

Neutrino University Summer Lecture Series
Fermilab, July 26, 2023

Oscillating Neutrinos Need Mass

๕้ Neutrinos oscillate among flavors:

$$
P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right)=1-\sin ^{2} 2 \theta \sin ^{2} \frac{\Delta m^{2} L}{4 E}, \quad \Delta m^{2} \equiv m_{\nu_{2}}^{2}-m_{\nu_{1}}^{2}
$$

Oscillatory behavior observed by Daya Bay $\bar{\nu}_{e}$, KamLand $\bar{\nu}_{e}$ and SuperKamiokande atmospheric ν_{μ} data

How do Neutrinos Gain Mass?

\% Neutrinos are Spin-1/2 Fermions which have an intrinsic property called Helicity:

\&์ A related concept for massive fermions is Chirality. A mass term flips left-handed fermion into a right-handed fermion and vice versa.
\mathfrak{z} In the Standard Model such chirality flips arise through couplings to the Higgs boson:

How do Neutrinos Gain Mass? (cont.)

\& The couplings of electrons to the photon does not change chirality:

\& Neutrinos appear in nature only as left-handed. Mass generation via Higgs mechanism is not so trivial. In fact, in the Standard Model, neutrinos are exactly massless! New physics is called for.
\% Neutrinos we know of are all left-handed $\left(\nu_{L}\right)$; while the anti-neutrinos are all right-handed $\left(\nu^{c}\right)_{R}$

Neutrinos Gaining Mass

$\mathfrak{\&}$ Every fermion has its anti-fermion partner with opposite charge: electron $e^{-} \leftrightarrow$ positron e^{+}. Positron has positive charge.
\% Antiparticle of e_{L}^{-}is e_{R}^{+}- chirality flips between particle and antiparticle
\& Since neutrinos are neutral, a chirality flipping mass term between ν_{L} and $\left(\nu^{c}\right)_{R}$ is possible. Electric charge conservation forbids such a mass for the electron, and for all charged fermions
$\mathfrak{\&}$ If this is the source of its mass, neutrino will be a Majorana particle. That is, neutrino is its own antiparticle. All other spin- $1 / 2$ particles are Dirac fermions.
\% Majorana mass is only possible for the neutrino among all elementary fermions. Majoran neutrinos would imply that Lepton Number is a broken symmetry.

Neutrinoless Double Beta Decay

\% Lepton number is an accidental symmetry of the Standard Model. Electrons and neutrinos have $L=1$, while positrons, antineutrinos have $L=-1$. A Majorana mass term breaks L by two units.
\& Neutrino oscillation experiments are blind to the Dirac nature or the Majorana nature of the neutrino mass.
$\mathscr{\&}$ Double beta decay is a rare process where neutron converts itself into proton + electron and an anti-neutrino twice inside a nucleus:

\%: If neutrino has a Majorana mass, even rarer neutrino-less double beta decay can occur.

Neutrinoless Double Beta Decay (cont.)

\% Observation of neutrino-less double beta decay would confirm lepton number violation by two units, and one can infer the Majorana nature of neutrino.
\%์ This process plays a crucial role in the idea of Leptogenesis, that creates the baryon asymmetry of the Universe.

ฉ์ Here a Majorana fermion N_{1} decays into lepton plus Higgs ($N_{1} \rightarrow \ell+H$); the same N_{1} also decays into antilepton plus anti-Higgs $\left(N_{1} \rightarrow \bar{\ell}+\bar{H}\right)$

Neutrinoless Double Beta Decay Limit on m_{ν}

\&ะ Majorana vs Dirac neutrinos: Observation of $\beta \beta 0 \nu$ will establish neutrinos are Majorana particles
\% Kamland-Zen collaboration has a limit from ${ }^{136} \mathrm{Xe}$:

$$
T_{0 \nu}^{1 / 2}>1.07 \times 10^{26} \mathrm{yr} .
$$

\% Constrains effective double beta decay mass of neutrino to be

$$
\begin{gathered}
m_{\beta \beta}<(61-165) \mathrm{meV} \\
m_{\beta \beta}=\left|\sum_{i} U_{e i}^{2} m_{i}\right|=\left|c_{12}^{2} c_{13}^{2} e^{2 i \alpha_{1}} m_{1}+c_{13}^{2} s_{12}^{2} e^{2 i \alpha_{2}} m_{2}+s_{13}^{2} m_{3}\right|
\end{gathered}
$$

Neutrino Mass Ordering

\% Current data allows for two possible ordering of the neutrino masses:

\&\% If mass ordering is normal: $0 \leq m_{\beta \beta} \leq 4 \mathrm{meV}$
$\%$ If mass ordering is inverted: $20 \mathrm{meV} \leq m_{\beta \beta} \leq 50 \mathrm{meV}$

Experimental Limit on $m_{\beta \beta}$ versus $m_{\text {min }}$

Bilenky, Giunti (2014)

Absolute Neutrino Mass

\% Neutrino oscillation experiments only sensitive to $\Delta m_{i j}^{2}=m_{\nu_{i}}^{2}-m_{\nu_{j}}^{2}$. Absolute scale of neutrino mass is left undetermined.
\% Beta decay sepctrum near the end point of electron energy can test directly neutrino mass. Katrin experiment has the best limit from ${ }^{3} \mathrm{H}$ beta decay:

$$
m_{\nu} \leq 0.8 \mathrm{eV}
$$

Current knowledge of 3-neutrino oscillations

					NuFIT 5.1 (2021)
		Normal Ordering (best fit)		Inverted Ordering ($\left.\Delta \chi^{2}=2.6\right)$	
		bfp $\pm 1 \sigma$	3σ range	bfp $\pm 1 \sigma$	3σ range
	$\sin ^{2} \theta_{12}$	$0.304_{-0.012}^{+0.013}$	$0.269 \rightarrow 0.343$	$0.304_{-0.012}^{+0.012}$	$0.269 \rightarrow 0.343$
	$\theta_{12} /^{\circ}$	$33.44_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.86$	$33.455_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.87$
	$\sin ^{2} \theta_{23}$	$0.573_{-0.023}^{+0.018}$	$0.405 \rightarrow 0.620$	$0.578_{-0.021}^{+0.017}$	$0.410 \rightarrow 0.623$
	$\theta_{23} /^{\circ}$	$49.22_{-1.3}^{+1.0}$	$39.5 \rightarrow 52.0$	$49.5{ }_{-1.2}^{+1.0}$	$39.8 \rightarrow 52.1$
	$\sin ^{2} \theta_{13}$	$0.02220_{-0.00062}^{+0.00068}$	$0.02034 \rightarrow 0.02430$	$0.02238_{-0.00062}^{+0.00064}$	$0.02053 \rightarrow 0.02434$
$\frac{w}{v}$	$\theta_{13} /^{\circ}$	$8.57_{-0.12}^{+0.13}$	$8.20 \rightarrow 8.97$	$8.60_{-0.12}^{+0.12}$	$8.24 \rightarrow 8.98$
-	$\delta_{\mathrm{CP}} /{ }^{\circ}$	194_{-25}^{+52}	$105 \rightarrow 405$	$287{ }_{-32}^{+27}$	$192 \rightarrow 361$
3	$\begin{gathered} \frac{\Delta m_{21}^{2}}{10^{-5} \mathrm{eV}^{2}} \\ \frac{\Delta m_{3 \ell}^{2}}{10^{-3} \mathrm{eV}^{2}} \end{gathered}$	$7.42_{-0.20}^{+0.21}$ $+2.515_{-0.028}^{+0.028}$	$6.82 \rightarrow 8.04$ $+2.431 \rightarrow+2.599$	$7.42_{-0.20}^{+0.21}$ $-2.498_{-0.029}^{+0.028}$	$6.82 \rightarrow 8.04$ $-2.584 \rightarrow-2.413$

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou (2020)

Roadmap for Neutrino Models

Giving the Neutrino a Mass

\% Neutrino masses are zero in the Standard Model, since right-handed neutrino is not present
$\mathfrak{\&}$ Neutrino mass can be generated by adding right-handed neutrinos:

\& Neutrino has now a Dirac mass which can explain all oscillation data
$\%$ However, the coupling of ν_{R} with the Higgs boson has to be extremely tine, $\sim 10^{-13}$, which is viewed as unnatural. (Natural couplings are of order one!)
\% Such a Dirac neutrino will exasperate the fermion mass hierarchy puzzle

Fermion Mass Hierarchy Puzzle

$\mathfrak{\%}$ The big gap between neutrino masses and charged fermion masses will be unexplained in case of Dirac neutrinos

Features of the putative right-handed neutrino

\&์ ν_{R}, if it exists, has no weak interactions. It is a sterile component of the neutrino

$\% \nu_{R}$ only takes part in the neutrino mass generation mechanism
\& In fact, one can write down a Majorana mass for the ν_{R}. This mass can be very large, much larger than the electroweak scale
$\mathscr{\&}$ In this case one would realize the seesaw mechanism for naturally small neutrino masses!

Origin of neutrino mass: Seesaw mechanism

\% Adding right-handed neutrino N^{c} which transforms as singlet under $S U(2)_{L}$,

$$
\mathcal{L}=f_{\nu}(L \cdot H) N^{c}+\frac{1}{2} M_{R} N^{c} N^{c}
$$

\& Integrating out the $N^{c}, \Delta L=2$ operator is induced:

$$
\mathcal{L}_{\text {eff }}=-\frac{f_{\nu}^{2}}{2} \frac{(L \cdot H)(L \cdot H)}{M_{R}}
$$

\mathscr{F} Once H acquires VEV, neutrino mass is induced:

$$
m_{\nu} \simeq f_{\nu}^{2} \frac{v^{2}}{M_{R}}
$$

Minkowski (1977)
Yanagida (1979)
Gell-Mann, Ramond, Slansky (1980)
Mohapatra \& Senjanovic (1980)
\&\% For $f_{\nu} v \simeq 100 \mathrm{GeV}, M_{R} \simeq\left(10^{14}-10^{15}\right) \mathrm{GeV}$.

Seesaw Mechanism in Matrix Form

\% Including a Dirac mass term that connects ν_{L} and ν_{R} and the Majorana mass term for ν_{R}, the 2×2 neutrino mass matrix looks:

$$
M_{\nu}=\left(\begin{array}{cc}
0 & m_{D} \\
m_{D} & M_{R}
\end{array}\right)
$$

\mathfrak{H} This matrix has one heavy eigenvalue and one light eigenvalue when $m_{D} \ll M_{R}$:

$$
\begin{aligned}
M_{N} & =M_{R} \\
m_{\nu} & =\frac{m_{D}^{2}}{M_{R}}
\end{aligned}
$$

\% As M_{R} becomes larger and larger, m_{ν} becomes smaller and smaller. Hence the name seesaw

Baryogenesis via leptogenesis and type-I seesaw

\& In the early history of the universe, a lepton asymmetry may be dynamically generated in the decay of N Fukugita, Yanagida (1986)
\&ะ N being a Majorana fermion can decay to $L+H$ as well as $\bar{L}+H^{*}$

\& Three Sakharov conditions can be satisfied: B violation via electroweak sphaleron, C and $C P$ violation in Yukawa couplings of N, and out of equilibrium condition via expanding universe
$\mathscr{\&}^{\&}$ Lepton asymmetry in decay of N_{1} (with $M_{1} \ll M_{2,3}$):

$$
\varepsilon_{1} \simeq \frac{3}{16 \pi} \frac{1}{\left(f_{\nu} f_{\nu}^{\dagger}\right)_{11}} \sum_{i=2,3} \operatorname{Im}\left[\left(f_{\nu} f_{\nu}^{\dagger}\right)_{i 1}^{2}\right] \frac{M_{1}}{M_{i}}
$$

$\% \varepsilon \sim 10^{-6}$ can explain observed baryon asymmetry of the universe
\% Indirect tests in Majorana nature of ν and in CP violation in oscillations

A Second Way of Seesawing Neutrino Mass

\%i Neutrino Majorana mass can arise even in the absence of ν_{R}. Simply use $\left(\nu^{c}\right)_{R}$ in its place:

\% Δ here is a new Higgs triplet field which has a nonzero vacuum expectation value that breaks Lepton Number. This expectation value is tiny compared to the usual Higgs expectation value, since the mass of Δ is very large!
$\mathfrak{\&}$ This way of generating small neutrino mass is called the Type-II seesaw mechanism

Seesaw mechanism (cont.)

Type II seesaw: $\Phi_{3} \sim(1,3,1)$
Mohapatra \& Senjanovic (1980)
Schechter \& Valle (1980)

Lazarides, Shafi, \& Wetterich (1981)

Type III seesaw: $N_{3} \sim(1,3,0)$
Foot, Lew, He, \& Joshi (1989)

Ma (1998)

\& Φ_{3} abd N_{3} contain charged particles which can be looked for at LHC
\& Eg: $\Phi^{++} \rightarrow \ell^{+} \ell^{+}, \Phi^{++} \rightarrow W^{+} W^{+}$decays would establish lepton number violation

Dirac Neutrino Mass Models

\&์ Neutrinos may be Dirac particles without lepton number violation
\%ٌ Oscillation experiments cannot distinguish Dirac neutrinos from Majorana neutrinos
\&้ Spin-flip transition rates (in stars, early universe) are suppressed by small neutrino mass:

$$
\Gamma_{\text {spin-flip }} \approx\left(\frac{m_{\nu}}{E}\right)^{2} \Gamma_{\text {weak }}
$$

ฉ์ If neutrinos are Dirac, it would be nice to understand the smallness of their mass
\& Models exist which explain the smallness of Dirac m_{ν}
\% "Dirac leptogenesis" can explain baryon asymmetry
Dick, Lindner, Ratz, Wright (2000)

Dirac Seesaw Models

\mathscr{L} Dirac seesaw can be achieved in Mirror Models Lee, Yang (1956); Foot,
Volkas (1995); Berezhiani, Mohapatra (1995), Silagadze(1997) and Left-Right Symmetric Models Mohapatra (1988); Babu, He (1989); Babu, He, Su, Thapa (2022)
\& Mirror sector is a replica of Standard Model, with new particles transforming under mirror gauge symmetry:

$$
L=\binom{\nu}{e}_{L} ; \quad H=\binom{H^{+}}{H^{0}} ; \quad L^{\prime}=\binom{\nu^{\prime}}{e^{\prime}}_{L} ; \quad H^{\prime}=\binom{H^{\prime}+}{H^{\prime 0}}
$$

\mathscr{R}° Effective dimension-5 operator induces small Dirac mass:

Dirac Neutrino from Left-Right Symmetry

\% Fermion transformation: $S U(3)_{c} \times S U(2)_{L} \times S U(2)_{R} \times U(1)_{B-L}$:

$$
\begin{array}{ll}
Q_{L}(3,2,1,1 / 3)=\binom{u_{L}}{d_{L}}, & Q_{R}(3,1,2,1 / 3)=\binom{u_{R}}{d_{R}}, \\
\Psi_{L}(1,2,1,-1)=\binom{\nu_{L}}{e_{L}}, & \Psi_{R}(1,1,2,-1)=\binom{\nu_{R}}{e_{R}} .
\end{array}
$$

\% Since neutrino Dirac mass arises via two-loop diagrams, it is extremely small

Babu, He (1989); Babu, He, Su, Thapa (2021)

Unification of Forces \& Matter

16 members of a family fit into a single unit (a spinor) in $S O(10)$

$u_{r}:\{-+++-\}$	$d_{r}:\{-++-+\}$	$u_{r}^{c}:\{+--++\}$	$d_{r}^{c}:\{+----\}$
$u_{b}:\{+-++-\}$	$d_{b}:\{+-+-+\}$	$u_{b}^{c}:\{-+-++\}$	$d_{b}^{c}:\{-+---\}$
$u_{g}:\{++-+-\}$	$d_{g}:\{++--+\}$	$u_{g}^{c}:\{--+++\}$	$d_{g}^{c}:\{--+--\}$
$v:\{---+-\}$	$e:\{----+\}$	$v^{c}:\{+++++\}$	$e^{c}:\{+++--\}$

First 3 spins refer to color, last two are weak spins

$$
Y=\frac{1}{3} \Sigma(C)-\frac{1}{2} \Sigma(W)
$$

Disparity in Quark \& Lepton Mixings

Yukawa Sector of Minimal $S O(10)$

$$
16 \times 16=10_{s}+120_{a}+126_{s}
$$

$\%$ At least two Higgs fields needed for family mixing
$\%$ Symmetric 10_{H} and $\overline{126}$ is the minimal model

$$
\begin{aligned}
W_{S O(10)} & =16^{T}\left(Y_{10} 10_{H}+Y_{126} \overline{126}_{H}\right) 16 . \\
M_{U} & =v_{u}^{10} Y_{10}+v_{u}^{126} Y_{126} \\
M_{D} & =v_{d}^{10} Y_{10}+v_{d}^{126} Y_{126} \\
M_{E} & =v_{d}^{10} Y_{10}-3 v_{d}^{126} Y_{126} \\
M_{\nu_{D}} & =v_{u}^{10} Y_{10}-3 v_{u}^{126} Y_{126} \\
M_{R} & =Y_{126} V_{R}
\end{aligned}
$$

Minimal Yukawa sector of SO(10)

\& 12 parameters plus 7 phases to fit 18 observed quantities
$\%$ This setup fits all obsevables quite well
\% Large neutrino mixings coexist with small quark mixings
\% θ_{13} prediction turned out to be correct

Babu, Mohapatra (1993); Bajc, Senjanovic, Vissani (2001); (2003); Fukuyama, Okada (2002); Goh, Mohapatra, Ng (2003); Bajc, Melfo, Senjanovic, Vissani (2004); Bertolini, Malinsky, Schwetz (2006); Babu, Macesanu (2005); Dutta, Mimura, Mohapatra (2007); Aulakh et al (2004); Bajc, Dorsner, Nemevsek (2009); Joshipura, Patel (2011); Dueck, Rodejohann (2013); Ohlsson, Penrow (2019); Babu, Bajc, Saad (2018); Babu, Saad (2021)

Best fit values for fermion masses and mixings

Observables $($ masses in GeV$)$	SUSY			non-SUSY		
	Input	Best Fit	Pull	Input	Best Fit	Pull
$m_{u} / 10^{-3}$	0.502 ± 0.155	0.515	0.08	0.442 ± 0.149	0.462	0.13
m_{c}	0.245 ± 0.007	0.246	0.14	0.238 ± 0.007	0.239	0.18
m_{t}	90.28 ± 0.89	90.26	-0.02	74.51 ± 0.65	74.47	-0.05
$m_{b} / 10^{-3}$	0.839 ± 0.17	0.400	-2.61	1.14 ± 0.22	0.542	-2.62
$m_{s} / 10^{-3}$	16.62 ± 0.90	16.53	-0.09	21.58 ± 1.14	22.57	0.86
m_{b}	0.938 ± 0.009	0.933	-0.55	0.994 ± 0.009	0.995	0.19
$m_{e} / 10^{-3}$	0.3440 ± 0.0034	0.344	0.08	0.4707 ± 0.0047	0.470	-0.03
$m_{\mu} / 10^{-3}$	72.625 ± 0.726	72.58	-0.05	99.365 ± 0.993	99.12	-0.24
m_{τ}	1.2403 ± 0.0124	1.247	0.57	1.6892 ± 0.0168	1.688	-0.05
$\left\|V_{u s}\right\| / 10^{-2}$	22.54 ± 0.07	22.54	0.02	22.54 ± 0.06	22.54	0.06
$\left\|V_{c b}\right\| / 10^{-2}$	3.93 ± 0.06	3.908	-0.42	4.856 ± 0.06	4.863	0.13
$\left\|V_{u b}\right\| / 10^{-2}$	0.341 ± 0.012	0.341	0.003	0.420 ± 0.013	0.421	0.10
$\delta_{C K M}^{\circ}$	69.21 ± 3.09	69.32	0.03	69.15 ± 3.09	70.24	0.35
$\Delta m_{21}^{2} / 10^{-5}\left(e V^{2}\right)$	8.982 ± 0.25	8.972	-0.04	12.65 ± 0.35	12.65	-0.01
$\Delta m_{31}^{2} / 10^{-3}\left(\mathrm{eV} \mathrm{V}^{2}\right)$	3.05 ± 0.04	3.056	0.02	4.307 ± 0.059	4.307	0.006
$\sin ^{2} \theta_{12}$	0.318 ± 0.016	0.314	-0.19	0.318 ± 0.016	0.316	-0.07
$\sin ^{2} \theta_{23}$	0.563 ± 0.019	0.563	0.031	0.563 ± 0.019	0.563	0.01
$\sin ^{2} \theta_{13}$	0.0221 ± 0.0006	0.0221	-0.003	0.0221 ± 0.0006	0.0220	-0.16
$\delta_{C P}^{\circ}$	224.1 ± 33.3	240.1	0.48	224.1 ± 33.3	225.1	0.03
χ^{2}	-	-	7.98	-	-	7.96

Babu, Saad (2021)

Dirac CP phase

Multiple χ^{2} minima make $\delta_{C P}$ prediction difficult

Babu, Bajc, Saad (2018)

Proton decay predictions

$\mathscr{\&}$ Proton decay branching ratios determined by neutrino oscillation fits
\& Mediated by superheavy gauge bosons
$\mathscr{\&}$ Lifetime has large uncertainties, $\tau_{p} \approx\left(10^{32}-10^{36}\right)$ yrs.

Prediction of branching ratios

$$
\begin{aligned}
\Gamma\left(p \rightarrow \pi^{0} e^{+}\right) & \rightarrow 47 \% \\
\Gamma\left(p \rightarrow \pi^{0} \mu^{+}\right) & \rightarrow 1 \% \\
\Gamma\left(p \rightarrow \eta^{0} e^{+}\right) & \rightarrow 0.20 \% \\
\Gamma\left(p \rightarrow \eta^{0} \mu^{+}\right) & \rightarrow 0.00 \% \\
\Gamma\left(p \rightarrow K^{0} e^{+}\right) & \rightarrow 0.16 \% \\
\Gamma\left(p \rightarrow K^{0} \mu^{+}\right) & \rightarrow 3.62 \% \\
\Gamma\left(p \rightarrow \pi^{+} \bar{\nu}\right) & \rightarrow 48 \% \\
\Gamma\left(p \rightarrow K^{+} \bar{\nu}\right) & \rightarrow 0.22 \%
\end{aligned}
$$

Nemesvek, Bajc, Dorsner (2009)
Babu, Khan (2015)

Radiative neutrino mass generation

$\%$ An alternative to seesaw is radiative neutrino mass generation, where neutrino mass is absent at tree level, but arises via quantum loop corrections
$\mathfrak{2}$ The smallness of neutrino mass is explained by loop and chiral suppressions
$\mathscr{\&}$ Loop diagrams may arise at 1-loop, 2-loop or 3-loop levels
\% New physics scale typically near TeV and thus accessible to LHC
๕์ Further tests in observable LFV processes and as nonstandard neutrino interaction (NSI) in oscillations

Radiative Neutrino Mass Models

KNT

Effective $\Delta L=2$ Operators

$$
\begin{aligned}
& \mathcal{O}_{1}=L^{i} L^{j} H^{k} H^{\prime} \epsilon_{i k} \epsilon_{j l} \\
& \mathcal{O}_{2}=L^{i} L^{j} L^{k} e^{c} H^{\prime} \epsilon_{i j} \epsilon_{k l} \\
& \mathcal{O}_{3}=\left\{L^{i} L^{j} Q^{k} d^{c} H^{\prime} \epsilon_{i j} \epsilon_{k l}, L^{i} L^{j} Q^{k} d^{c} H^{\prime} \epsilon_{i k} \epsilon_{j j}\right\} \\
& \mathcal{O}_{4}=\left\{L^{i} L^{j} \bar{Q}_{i} \bar{u}^{c} H^{k} \epsilon_{j j}, \quad \quad^{i} L^{j} \bar{Q}_{k} \bar{u}^{c} H^{k} \epsilon_{i j}\right\} \\
& \mathcal{O}_{5}=L^{i} L^{j} Q^{k} d^{c} H^{\prime} H^{m} \bar{H}_{i} \epsilon_{j j} \epsilon_{k m} \\
& \mathcal{O}_{6}=L^{i} L^{j} \bar{Q}_{k} \bar{u}^{c} H^{\prime} H^{k} \bar{H}_{i j l} \epsilon_{j l} \\
& \mathcal{O}_{7}=L^{i} Q^{j} \overline{j^{c}} \bar{Q}_{k} H^{k} H^{\prime} H^{m} \epsilon_{i l} \epsilon_{j m} \\
& \mathcal{O}_{8}=L^{i} \bar{e}^{c} \bar{u}^{c} d^{c} H^{j} \epsilon_{i j} \\
& \mathcal{O}_{9}=L^{i} L^{j} L^{k} e^{c} L^{\prime}{ }^{c} \epsilon_{i j} \epsilon_{k l} \\
& \mathcal{O}_{1}^{\prime}=L^{i} L^{j} H^{k} H^{\prime} \epsilon_{i k} \epsilon_{j l} H^{* m} H_{m}
\end{aligned}
$$

Babu \& Leung (2001)
de Gouvea \& Jenkins (2008)
Angel \& Volkas (2012)
Cai, Herrero-Garcia, Schmidt, Vicente, Volkas (2017)
Lehman (2014) - all d=7 operators
Li, Ren, Xiao, Yu, Zheng (2020); Liao, Ma (2020) - all d=9 operators

Operator \mathcal{O}_{2} and the Zee model

\% Introduce a singly charged scalar and a second Higgs doublet to standard model:

$$
\begin{gathered}
\mathcal{L}=f_{i j} L_{i}^{a} L_{j}^{b} h^{+} \epsilon_{a b}+\mu H^{a} \Phi^{b} h^{-} \epsilon_{a b}+\text { h.c. } \\
\Downarrow \\
\mathcal{O}_{2}=L^{i} L^{j} L^{k} e^{c} H^{\prime} \epsilon_{i j} \epsilon_{k l}
\end{gathered}
$$

Zee (1980)
\% Neutrino mass arises at one-loop.

\% A minimal version of this model in which only one Higgs doublet couples to a given fermion sector with a Z_{2} symmetry yields:

Wolfenstein (1980)

$$
m_{\nu}=\left(\begin{array}{ccc}
0 & m_{e \mu} & m_{e \tau} \\
m_{e \mu} & 0 & m_{\mu \tau} \\
m_{e \tau} & m_{\mu \tau} & 0
\end{array}\right), \quad m_{i j} \simeq \frac{f_{i j}}{16 \pi^{2}} \frac{\left(m_{i}^{2}-m_{j}^{2}\right)}{\Lambda}
$$

It requires $\theta_{12} \simeq \pi / 4 \rightarrow$ ruled out by solar + KamLAND data.
Koide (2001); Frampton et al. (2002); He (2004)

Neutrino oscillations in the Zee model

\&ะ Neutrino oscillation data can be fit to the Zee model consistently without the Z_{2} symmetry
\% Some benchmark points for Yukawa couplings of second doublet:

$$
\begin{aligned}
\text { BP I }: Y & =\left(\begin{array}{ccc}
Y_{e e} & 0 & Y_{e \tau} \\
0 & Y_{\mu \mu} & Y_{\mu \tau} \\
0 & Y_{\tau \mu} & Y_{\tau \tau}
\end{array}\right) \\
\text { BP II : } Y & =\left(\begin{array}{ccc}
0 & Y_{e \mu} & Y_{e \tau} \\
Y_{\mu e} & 0 & Y_{\mu \tau} \\
0 & Y_{\tau \mu} & Y_{\tau \tau}
\end{array}\right) \\
\text { BP III : } Y & =\left(\begin{array}{ccc}
Y_{e e} & 0 & Y_{e \tau} \\
0 & Y_{\mu \mu} & Y_{\mu \tau} \\
Y_{\tau e} & 0 & Y_{\tau \tau}
\end{array}\right)
\end{aligned}
$$

Babu, Dev, Jana, Thapa (2019)

Neutrino fit in the Zee model

Babu, Dev, Jana, Thapa (2019)

Symmetries of Neutrino Mass Matrix

\mathscr{E} Neutrino mass matrix may have certain flavor symmetries that may constrain parameters of oscillations
\& Such symmetries often lead to zeros in the neutrino mass matrix: texture zero
\&: Majorana neutrino mass matrix is symmetric, at most two texture zeros are admisssible, consistent with neutrino data
\& Each case makes a prediction for currently unknown oscillation parameters: CP violation, lightest neutrino mass, mass ordering

Texture Zeros

$$
\begin{aligned}
A_{1}:\left(\begin{array}{ccc}
0 & 0 & X \\
0 & X & X \\
X & X & X
\end{array}\right) & A_{2}:\left(\begin{array}{ccc}
0 & X & 0 \\
X & X & X \\
0 & X & X
\end{array}\right) \\
B_{1}:\left(\begin{array}{ccc}
X & X & 0 \\
X & 0 & X \\
0 & X & X
\end{array}\right) & B_{2}:\left(\begin{array}{ccc}
X & 0 & X \\
0 & X & X \\
X & X & 0
\end{array}\right) \\
B_{3}:\left(\begin{array}{ccc}
X & 0 & X \\
0 & 0 & X \\
X & X & X
\end{array}\right) & B_{4}:\left(\begin{array}{ccc}
X & X & 0 \\
X & X & X \\
0 & X & 0
\end{array}\right) \\
C:\left(\begin{array}{ccc}
X & X & X \\
X & 0 & X \\
X & X & 0
\end{array}\right) & \begin{array}{l}
\text { Frampton, Glashov, Marataia (2002) } \\
\text { Xing (2002) } \\
\text { Merle, , opedonann (2006) } \\
\text { Goswami et. al (2006) }
\end{array}
\end{aligned}
$$

Texture Zero Predictions

Conclusions

\& Neutrino may be either a Dirac fermion or a Majorana fermion
\% Observation of neutrinoless double beta decay will confirm its Majorana nature
\% Seesaw mechanism very attractive framework to explain smallness of Majorana neutrino masses
\&ٌ Unified theories can be very predictive for neutrino neutrino masses and mixings
$\mathscr{\%}$ Flavor symmetries may play a role, which would predict certain oscillation parameters
\% Further experiments needed to probe deep into the origin of neutrino mass!

