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Outline

o BSM signals in detectors
O MicroBooNE search recast

O Three-flavor oscillation fit
o NOVA + T2K “tension”



Recasting MicroBooNE

[2106.06548] with PA.N. Machado



https://arxiv.org/abs/2106.06548

MicroBooNE Search for Higgs-Portal Scalars

* |nspired by Batell et al , MicroBooNE sought a BSM signature in
a particular dataset in 2021:

K-> 7S, S—>e e

 These kaons are produced in the NuMI beam line or absorber, and decay
within the absorber.

» The absorber is 100 m from MicroBooNE — the S must be moderately long-
lived to reach MicroBooNE and decay inside.

MicroBooNE


https://arxiv.org/abs/1909.11670
https://arxiv.org/abs/2106.00568
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MicroBooNE Constraint MicroBooNE

* reinterpretation
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Signal Rate from KDAR BSM

signal rate .
<A flux of new particles detector area

//

probability of decay happening in detector J )

signal efficiency
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Flux Example
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Flux Example
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How to recast HPS to HNL?
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* Without digging into the weeds, MicroBooNE recorded data and performed
an analysis looking for S — e e~ signal events.



How to recast HPS to HNL?

* Without digging into the weeds, MicroBooNE recorded data and performed
an analysis looking for S — e e~ signal events.

* This included a boosted decision tree (BDT) trained on signal and background
Monte Carlo.

TABLE II. Estimated signal selection efficiency (eff.) for
a scalar boson decay inside the TPC, and event yield [un-
weighted (unwt.) and beam-on exposure-weighted (exp. wt.),
with the expected signal for Oxcv].

Event count

Category Eff. (%) Unwt. Exp. Wt.
Beam-off dataset 10 1.1+£0.4
Neutrino simulation 16 0.8 0.7
Signal (120 MeV/c®)  14.0 £0.8 7268 49415

Signal (160 MeV/c®)  14.9£0.9 7654 12.2 £ 3.6




How to recast HPS to HNL?

* Without digging into the weeds, MicroBooNE recorded data and performed
an analysis looking for S — e e~ signal events.

* This included a boosted decision tree (BDT) trained on signal and background
Monte Carlo.

o After cutting on the BDT score, two™ candidate events pass, on a background
expectation of 1.9 = (.8 events.

TABLE II. Estimated signal selection efficiency (eff.) for .
a scalar boson decay inside the TPC, and event yield [un- Goal: as a function of mass,

weighted (unwt.) and beam-on exposure-weighted (exp. wt.), :
with the expected signal for Oxcv]. determlne the HNL mOdeI
parameters that predict the same

Event count

Category Eff. (%)  Unwt.  Exp. Wt. signal rate that MicroBooNE has
Beam-off dataset 10 1.1+04 ' ~
Neutrino simulation 16 0.8+0.7 eXCIUded fOr the nggS pOrtaI
Signal (120 MeV/c?)  14.0+0.8 7268 49+15 scalar model.

Signal (160 MeV/c®*)  14.940.9 7654 12.2 + 3.6
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Same Rate? Ry = Oy A, P (X — e+e_) e(my)

Ry  Br(K — uN) myEJI' (N — ve™e™) e(my)

R - Br(K — n8) mEyI'(S — ete™) e(myg)




HPSRecast.1pynb
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OK, what about efficiency?
Ry = @Ay P (X - ete™) e(my)

Ry  Br(K — uN) myEJI'(N — ve™e™) e(my)

R - Br(K — n8) mqENI'(S — ete™) e(mg)




OK, what about efficiency?
Ry = ®yAi P (X = eTe™) e(my)

e(my)

e(myg)

What goes into signal efficiency?
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We apply two different BDT's to the preselected candi-
dates: one trained against cosmic backgrounds and one
trained against neutrino interactions simulated inside the
cryostat. FEach BDT is trained separately over the run 1
events and run 3 events, i.e., there are four BDT's in to-
tal. We split the run periods because the use of the CRT
in run 3 and the differences between forward and reverse
horn current operations can change the topologies and
properties of the background distributions that the BDT's
are trained against. We use xgboost [27] to train and ap-
ply the BDT's. We train the BDT's on ten input variables
each. Nine of the ten input variables are the same for the
cosmic-focused and neutrino-focused BDTs. These are
(1) the opening angle between the two reconstructed ob-
jects; (2) the opening angle in the plane transverse to the

Training Information from
M icrO BOON E MicroBooNE

hadron absorber direction from the detector center; (3,4)
the two angles between the two objects and the hadron
absorber direction; (5) the Pandora track or shower score
of the larger of the two objects (when ordered by number
of hits); (6) the number of hits of the larger object; (7)
the total number of hits contained in other objects in the
slice, not including the two objects that form the decay
candidate; (8) the maximum y coordinate, relative to the
decay vertex position, of shower start positions or track
start or end positions, for any other objects in the slice;
and (9) the minimum z coordinate, relative to the decay
vertex position, of shower start positions or track start or
end positions, for any other objects in the slice. The last
two variables are treated as “missing” within xgboost
if the slice contains only two objects. The tenth input
variable of the cosmic-focused BDT is the length of the
larger object. The tenth input variable of the neutrino-
focused BDT is the number of tracks in the slice. For all

14
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We apply two different BDT's to the preselected candi-
dates: one trained against cosmic backgrounds and one
trained against neutrino interactions simulated inside the
cryostat. Each BDT is trained separately over the run 1
events and run 3 events, i.e., there are four BDT's in to-
tal. We split the run periods because the use of the CRT
in run 3 and the differences between forward and reverse
horn current operations can change the topologies and
properties of the background distributions that the BDT's
are trained against. We use xgboost [27] to train and ap-
ply the BDT's. We train the BDT's on ten input variables
each. Nine of the ten input variables are the same for the
cosmic-focused and neutrino-focused BDTs. These are
(1) the opening angle between the two reconstructed ob-
jects; (2) the opening angle in the plane transverse to the

Ansatz:

Training Information from
M icrO BOON E MicroBooNE

hadron absorber direction from the detector center; (3,4)
the two angles between the two objects and the hadron
absorber direction; (5) the Pandora track or shower score
of the larger of the two objects (when ordered by number
of hits); (6) the number of hits of the larger object; (7)
the total number of hits contained in other objects in the
slice, not including the two objects that form the decay
candidate; (8) the maximum y coordinate, relative to the
decay vertex position, of shower start positions or track
start or end positions, for any other objects in the slice;
and (9) the minimum z coordinate, relative to the decay
vertex position, of shower start positions or track start or
end positions, for any other objects in the slice. The last
two variables are treated as “missing” within xgboost
if the slice contains only two objects. The tenth input
variable of the cosmic-focused BDT is the length of the
larger object. The tenth input variable of the neutrino-
focused BDT is the number of tracks in the slice. For all

(1) dominates the signal efficiency as a
function of BSM particle mass
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HPS Efficiency
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Restrrame.py
LabFrame.py



Restrrame.py
LabFrame.py

Generate e e~ events in the rest-
frame of the decaying HPS/HNL

(depends on RestFrame.py for HNL three-body
kinematics and vegas for phase-space sampling)

16



Generate e e~ events in the rest-
frame of the decaying HPS/HNL

(depends on RestFrame.py for HNL three-body
kinematics and vegas for phase-space sampling)

Restrrame.py
LabFrame.py

Transforms event to the laboratory frame,
smears events, and performs different
reconstruction/analyses on the events.
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Event Distributions
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Comparilison between HPS
and HNL events 1n this

kinematic space.



HNL vs HPS
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Updated Efficiency for HNLs
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New Constralnt on HNLs
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New Constralnt on HNLs
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T2K & NOVA Three-flavor Oscillations

[2007.08526]
with PA.N. Machado, S.J. Parke, Y.F. Perez-Gonzalez, and R. Zukanovich-Funchal



https://arxiv.org/abs/2007.08526

Long-baseline Accelerator Neutrinos in One Slide

Far Detector

e

“Disappearance” or “Survival” Probabillity

“Appearance” Probabillity

24



Long-baseline Accelerator Neutrinos in One Slide

Far Detector

e

“Disappearance” or “Survival” Probabillity

“Appearance” Probabillity

{sin 6y, |Am? | |
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Long-baseline Accelerator Neutrinos in One Slide

Far Detector

e

“Disappearance” or “Survival” Probabillity

“Appearance” Probabillity
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Example: “fitting” T2K Expected Event Rate

Antineutrino mode e-like candidates
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https://zenodo.org/record/3959558

Antineutrino mode e-like candidates

Goal: Reproduce such a prediction
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Ansatz (Denton et al [2008.07110]):

nw, =xPw, - v,)+yPw,— v, +z2

(Probabilities evaluated at L = Ly, E = (Epox)s P = Prox)

(Dominant) contribution to electron-like events in neutrino/antineutrino modes
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Antineutrino mode e-like candidates
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Antineutrino mode e-like candidates

T2K Runl-10 Preliminary

_I | | I N | I D | | N | | | | N I | I D | 1 T 1 I | I_
24 — —
22— —
20 — —
18 — —
16 - —
14 - ) § =0 o

B — S11 623 = 045,050,055,060 CP~— B

C — Am3}, =2.49x10" eV? ® O,=-m2 _
12 — Amz. — —2.46)(10_3 CV2 I 68% SYSt err. at best-fit ]

L 508 e v Best-fit I
10 = 6CP ) -o— Data (68% stat err.) ]

CP~
_I | | | 1 1 1 | [ 1 1 1 | . 1 1 1 | . 1 1 1 | | 1 1 1 | [ 1 1 1 | . 1 1 1 | | I—

50 60 70 30 90 100 110 120

Neutrino mode e-like candidates

27


https://zenodo.org/record/3959558

T2KNOVA. 1pynb



OscProbs Python.py



(Poorly annotated) python code

to calculate oscillation
probabilities in a constant matter
density.

OscProbs Python.py
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Determining x, y, z

nlv, =xPv, - v,)+yP(i, > U, +z
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T2K and NOvA Data VS. Expectatlons
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Parameter Scan — NO wvs 10



T2K/NOVA Results
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T2K/NOVA Results

NOVA: Ay? = (.15 (NO)
T2K: Ay? = 1.81 (NO)
Joint: Ay? = — 2.66 (IO)

Joint — NOvVA

- NO (solid), IO (dashed) /[

I I I I
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Neutrino data can often be interpreted in novel ways — the more
information afforded to outside phenomenologists, the more reliable
the results will be.

Reinterpretations allow us to perform as wide of a range of searches
as possible, including those not yet imagined. Be curious!
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