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Fermi’s	neutrino	is	
massless	and	feels	only	

the	weak	force



How to “See” a  Neutrino

• Neutrinos,	being	neutral,	do	not	interact	with	photons.	
They	are	literally	invisible.
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How to “See” a  Neutrino

• Neutrinos,	being	neutral,	do	not	interact	with	photons.	
They	are	literally	invisible.

• When	the	neutrino	collides	with	an	atom,	it	produces	
charged	particles.

• They	are	visible	and	seem	to	appear	out	of	nowhere.
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Only Weak Interactions

Interaction	length	for	a	high-
energy	photon	in	carbon	is	
~20	cm.

For	a	neutrino	of	the	same	
energy	its	~1	light	year!
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having 110 photomultiplier tubes to
collect scintillation light and produce
electronic signals. 

In this sandwich configuration, a
neutrino-induced event in, say, tank A
would create two pairs of proton
prompt-coincidence pulses from detec-
tors I and II flanking tank A. The first
pair of pulses would be from positron
annihilation and the second from 
neutron capture. The two pairs would
be separated by about 3 to 10 microsec-
onds. Finally, no signal would emanate
from detector III because the gamma
rays from positron annihilation and
neutron capture in tank A are too low
in energy to reach detector III. 

Thus, the spatial origin of the event
could be deduced with certainty, and
the signals would be distinguished from
false delayed-coincidence signals 
induced by stray neutrons, gamma rays,
and other stray particles from cosmic-
ray showers or from the reactor. These
spurious signals would most likely 
trigger detectors I, II, and III in a 
random combination. The all-important
electronics were designed primarily by
Kiko Harrison and Austin McGuire.

The box entitled “Delayed-
Coincidence Signals from Inverse Beta
Decay” (page 22) illustrates delayed-
coincidence signals from the detector’s
top triad (composed of target tank A
and scintillation detectors I and II).
Once the delayed-coincidence signals
have been recorded, the neutrino-
induced event is complete. The signals
from the positron and neutron circuits,
which have been stored on delay lines,
are presented to the oscilloscopes. 

Figure 5 shows a few samples of 
oscilloscope pictures—some are accept-
able signals of inverse beta decay while
others are not.

Austin McGuire was in charge of
the design and construction of the 
“tank farm” that would house and
transport the thousands of gallons of
liquid scintillator needed for the experi-
ment. Three steel tanks were placed on
a flat trailer bed. The interior surfaces
of the tanks were coated with epoxy to
preserve the purity of the liquids.

Today, the need for purity and cleanli-
ness is becoming legendary as 
researchers build an enormous tank for
the next generation of solar-neutrino
experiments (see the article “Exorcising
Ghosts” on page 136), but even in 
the 1950s, possible background conta-
mination was an overriding concern. 

Since the scintillator had to be 
kept at a temperature not lower than 
60 degrees Fahrenheit, the outside 
walls of the tanks were wrapped with 
several layers of fiberglass insulating
material, and long strips of electrical
heating elements were embedded in 
the exterior insulation.

During the previous winter, while
the equipment was being designed and
built, John Wheeler encouraged and
supported the team, and he helped

pave the way for the next neutrino
measurement to be done at the new,
very powerful fission reactor at the
Savannah River Plant in South 
Carolina. By November 1955, the 
Los Alamos group was ready and once
again packed up for the long trip to
the Savannah River Plant.

The only suitable place for the 
experiments was a small, open area in
the basement of the reactor building,
barely large enough to house the detec-
tor. There, 11 meters of concrete would
separate the detector from the reactor
core and serve as a shield from reactor-
produced neutrons, and 12 meters 
of overburden would help eliminate 
the troublesome background 
neutrons, charged particles, and 
gamma rays produced by cosmic rays. 

Schuch’s idea gave birth to the 
Los Alamos total-immersion, or
“whole-body,” counter (see box “The
Whole-Body Counter” on page 15),
which was similar in design to the 
detector for Project Poltergeist but was
built especially to count the radioactive
contents of people. Since counting 
with this new device took only a few
minutes, it was a great advance over
he standard practice of using multiple

Geiger counters or sodium iodide (NaI)
crystal spectrometers in an underground
aboratory. The Los Alamos whole-

body counter was used during the
1950s to determine the degree to which
adioactive fallout from nuclear tests

and other nuclear and natural sources
was taken up by the human body. 

The Hanford Experiment

In the very early spring of 1953, the
Project Poltergeist team packed up 
Herr Auge, the 300-liter neutrino detec-
or, as well as numerous electronics

and barrels of liquid scintillator, and set
out for the new plutonium-producing
eactor at the Hanford Engineering

Works in Hanford, Washington. It was
he country’s latest and largest fission
eactor and would therefore produce
he largest flux of antineutrinos. 

Various aspects of the setup at Hanford
are shown in the photo collage. 

The equipment for the liquid scintil-
ator occupied two trucks parked 

outside the reactor building. One was
used to house barrels of liquid; in a sec-
ond smaller truck, liquid scintillators
were mixed according to various recipes
before they would be pumped into the
detector. Herr Auge was placed inside
he reactor building, very near the face

of the reactor wall, and was surrounded
by the homemade boron-paraffin shield-
ng intermixed with nearly all the lead

shielding available at Hanford. This
shield was to stop reactor neutrons and
gamma rays from entering the detector
and producing unwanted background. In
all, 4 to 6 feet of paraffin alternated with
4 to 8 inches of lead.

The electronic gear for detecting the
telltale delayed-coincidence signal from
inverse beta decay was inside the reac-
tor building. Its essential elements were
two independent electronic gates: one
to accept pulses characteristic of the
positron signal and the other to accept
pulses characteristic of the neutron-
capture signal. The two circuits were
connected by a time-delay analyzer. 

If a pulse appeared in the output of
the neutron circuit within 9 microsec-
onds of a pulse in the output of the
positron circuit, the count was regis-
tered in the channel that recorded 
delayed coincidences. Allowing for 
detector efficiencies and electronic 
gate settings and taking into account
the neutrino flux from the reactor, the 
expected rate for delayed coincidences
from neutrino-induced events was 
0.1 to 0.3 count per minute.

For several months, the team
stacked and restacked the shielding and
used various recipes for the liquid 
scintillator (see Hanford Menu in 
“The Hanford Experiment” collage).
Then they would set the electronics 
and listen for the characteristic double
clicks that would accompany detection
of the inverse beta decay. Despite the
exhausting work, the results were not
definitive. The delayed-coincidence
background, present whether or not the
reactor was on, was about 5 counts per
minute, many times higher than the 
expected signal rate. 

The scientists guessed that the back-
ground was due to cosmic rays entering
the detector, but the addition of various
types of shielding left the background
rate unchanged. Subsequent work 
underground suggested that the 
Hanford background of delayed-
coincidence pulses was indeed due to
cosmic rays. Reines and Cowan (1953)
reported a small increase in the number
of delayed coincidences when the 
reactor was on versus when it was 
off. Furthermore, the increase was 
consistent with the number expected
from the estimated flux of reactor 
neutrinos. This was tantalizing but 
insufficient evidence that neutrino

events were being detected. The 
Hanford experience was poignantly
summarized by Cowan (1964). 

“The lesson of the work was clear:
It is easy to shield out the noise men
make, but impossible to shut out the
cosmos. Neutrons and gamma rays
from the reactor, which we had feared
most, were stopped in our thick walls
of paraffin, borax and lead, but the 
cosmic ray mesons penetrated gleefully,
generating backgrounds in our equip-
ment as they passed or stopped in it.
We did record neutrino-like signals but
the cosmic rays with their neutron sec-
ondaries generated in our shields were
10 times more abundant than were 
the neutrino signals. We felt we had the
neutrino by the coattails, but our 
evidence would not stand up in court.”

The Savannah River
Experiment

After the Hanford experience, the
Laboratory encouraged Reines and
Cowan to set up a formal group with
the sole purpose of tracking neutrinos.
Other than the scientists who had 
already been working on neutrinos,
Kiko Harrison, Austin McGuire, and
Herald Kruse (a graduate student at the
time) were included in this group. 

They spent the following year 
redesigning the experiment from top to
bottom: detector, electronics, scintilla-
tor liquids, the whole works. The detec-
tor was entirely reconfigured to better
differentiate between events induced by
cosmic rays and those initiated in the
detector by reactor neutrinos. Figure 4
shows the new design. 

Two large, flat plastic tanks (called
the “target tanks” and labeled A and B)
were filled with water. The protons in
the water provided the target for 
inverse beta decay; cadmium chloride
dissolved in the water provided the 
cadmium nuclei that would capture 
the neutrons. The target tanks were
sandwiched between three large scintil-
lation detectors labeled I, II, and III
(total capacity 4,200 liters), each 

Figure 4. The Savannah River Neutrino Detector—A New Design
The neutrino detector is illustrated here inside its lead shield. Each of two large, flat
plastic tanks (pictured in light blue and labeled A and B) was filled with 200 liters of
water. The protons in the water provided the target for inverse beta decay; cadmium
chloride dissolved in the water provided the cadmium nuclei that would capture the
neutrons. The target tanks were sandwiched between three scintillation detectors 
(I, II, and III). Each detector contained 1,400 liters of liquid scintillator that was viewed 
by 110 photomultiplier tubes. Without its shield, the assembled detector weighed 
about 10 tons. 
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having 110 photomultiplier tubes to
collect scintillation light and produce
electronic signals. 

In this sandwich configuration, a
neutrino-induced event in, say, tank A
would create two pairs of proton
prompt-coincidence pulses from detec-
tors I and II flanking tank A. The first
pair of pulses would be from positron
annihilation and the second from 
neutron capture. The two pairs would
be separated by about 3 to 10 microsec-
onds. Finally, no signal would emanate
from detector III because the gamma
rays from positron annihilation and
neutron capture in tank A are too low
in energy to reach detector III. 

Thus, the spatial origin of the event
could be deduced with certainty, and
the signals would be distinguished from
false delayed-coincidence signals 
induced by stray neutrons, gamma rays,
and other stray particles from cosmic-
ray showers or from the reactor. These
spurious signals would most likely 
trigger detectors I, II, and III in a 
random combination. The all-important
electronics were designed primarily by
Kiko Harrison and Austin McGuire.

The box entitled “Delayed-
Coincidence Signals from Inverse Beta
Decay” (page 22) illustrates delayed-
coincidence signals from the detector’s
top triad (composed of target tank A
and scintillation detectors I and II).
Once the delayed-coincidence signals
have been recorded, the neutrino-
induced event is complete. The signals
from the positron and neutron circuits,
which have been stored on delay lines,
are presented to the oscilloscopes. 

Figure 5 shows a few samples of 
oscilloscope pictures—some are accept-
able signals of inverse beta decay while
others are not.

Austin McGuire was in charge of
the design and construction of the 
“tank farm” that would house and
transport the thousands of gallons of
liquid scintillator needed for the experi-
ment. Three steel tanks were placed on
a flat trailer bed. The interior surfaces
of the tanks were coated with epoxy to
preserve the purity of the liquids.

Today, the need for purity and cleanli-
ness is becoming legendary as 
researchers build an enormous tank for
the next generation of solar-neutrino
experiments (see the article “Exorcising
Ghosts” on page 136), but even in 
the 1950s, possible background conta-
mination was an overriding concern. 

Since the scintillator had to be 
kept at a temperature not lower than 
60 degrees Fahrenheit, the outside 
walls of the tanks were wrapped with 
several layers of fiberglass insulating
material, and long strips of electrical
heating elements were embedded in 
the exterior insulation.

During the previous winter, while
the equipment was being designed and
built, John Wheeler encouraged and
supported the team, and he helped

pave the way for the next neutrino
measurement to be done at the new,
very powerful fission reactor at the
Savannah River Plant in South 
Carolina. By November 1955, the 
Los Alamos group was ready and once
again packed up for the long trip to
the Savannah River Plant.

The only suitable place for the 
experiments was a small, open area in
the basement of the reactor building,
barely large enough to house the detec-
tor. There, 11 meters of concrete would
separate the detector from the reactor
core and serve as a shield from reactor-
produced neutrons, and 12 meters 
of overburden would help eliminate 
the troublesome background 
neutrons, charged particles, and 
gamma rays produced by cosmic rays. 

Schuch’s idea gave birth to the 
Los Alamos total-immersion, or
“whole-body,” counter (see box “The
Whole-Body Counter” on page 15),
which was similar in design to the 
detector for Project Poltergeist but was
built especially to count the radioactive
contents of people. Since counting 
with this new device took only a few
minutes, it was a great advance over
he standard practice of using multiple

Geiger counters or sodium iodide (NaI)
crystal spectrometers in an underground
aboratory. The Los Alamos whole-

body counter was used during the
1950s to determine the degree to which
adioactive fallout from nuclear tests

and other nuclear and natural sources
was taken up by the human body. 

The Hanford Experiment

In the very early spring of 1953, the
Project Poltergeist team packed up 
Herr Auge, the 300-liter neutrino detec-
or, as well as numerous electronics

and barrels of liquid scintillator, and set
out for the new plutonium-producing
eactor at the Hanford Engineering

Works in Hanford, Washington. It was
he country’s latest and largest fission
eactor and would therefore produce
he largest flux of antineutrinos. 

Various aspects of the setup at Hanford
are shown in the photo collage. 

The equipment for the liquid scintil-
ator occupied two trucks parked 

outside the reactor building. One was
used to house barrels of liquid; in a sec-
ond smaller truck, liquid scintillators
were mixed according to various recipes
before they would be pumped into the
detector. Herr Auge was placed inside
he reactor building, very near the face

of the reactor wall, and was surrounded
by the homemade boron-paraffin shield-
ng intermixed with nearly all the lead

shielding available at Hanford. This
shield was to stop reactor neutrons and
gamma rays from entering the detector
and producing unwanted background. In
all, 4 to 6 feet of paraffin alternated with
4 to 8 inches of lead.

The electronic gear for detecting the
telltale delayed-coincidence signal from
inverse beta decay was inside the reac-
tor building. Its essential elements were
two independent electronic gates: one
to accept pulses characteristic of the
positron signal and the other to accept
pulses characteristic of the neutron-
capture signal. The two circuits were
connected by a time-delay analyzer. 

If a pulse appeared in the output of
the neutron circuit within 9 microsec-
onds of a pulse in the output of the
positron circuit, the count was regis-
tered in the channel that recorded 
delayed coincidences. Allowing for 
detector efficiencies and electronic 
gate settings and taking into account
the neutrino flux from the reactor, the 
expected rate for delayed coincidences
from neutrino-induced events was 
0.1 to 0.3 count per minute.

For several months, the team
stacked and restacked the shielding and
used various recipes for the liquid 
scintillator (see Hanford Menu in 
“The Hanford Experiment” collage).
Then they would set the electronics 
and listen for the characteristic double
clicks that would accompany detection
of the inverse beta decay. Despite the
exhausting work, the results were not
definitive. The delayed-coincidence
background, present whether or not the
reactor was on, was about 5 counts per
minute, many times higher than the 
expected signal rate. 

The scientists guessed that the back-
ground was due to cosmic rays entering
the detector, but the addition of various
types of shielding left the background
rate unchanged. Subsequent work 
underground suggested that the 
Hanford background of delayed-
coincidence pulses was indeed due to
cosmic rays. Reines and Cowan (1953)
reported a small increase in the number
of delayed coincidences when the 
reactor was on versus when it was 
off. Furthermore, the increase was 
consistent with the number expected
from the estimated flux of reactor 
neutrinos. This was tantalizing but 
insufficient evidence that neutrino

events were being detected. The 
Hanford experience was poignantly
summarized by Cowan (1964). 

“The lesson of the work was clear:
It is easy to shield out the noise men
make, but impossible to shut out the
cosmos. Neutrons and gamma rays
from the reactor, which we had feared
most, were stopped in our thick walls
of paraffin, borax and lead, but the 
cosmic ray mesons penetrated gleefully,
generating backgrounds in our equip-
ment as they passed or stopped in it.
We did record neutrino-like signals but
the cosmic rays with their neutron sec-
ondaries generated in our shields were
10 times more abundant than were 
the neutrino signals. We felt we had the
neutrino by the coattails, but our 
evidence would not stand up in court.”

The Savannah River
Experiment

After the Hanford experience, the
Laboratory encouraged Reines and
Cowan to set up a formal group with
the sole purpose of tracking neutrinos.
Other than the scientists who had 
already been working on neutrinos,
Kiko Harrison, Austin McGuire, and
Herald Kruse (a graduate student at the
time) were included in this group. 

They spent the following year 
redesigning the experiment from top to
bottom: detector, electronics, scintilla-
tor liquids, the whole works. The detec-
tor was entirely reconfigured to better
differentiate between events induced by
cosmic rays and those initiated in the
detector by reactor neutrinos. Figure 4
shows the new design. 

Two large, flat plastic tanks (called
the “target tanks” and labeled A and B)
were filled with water. The protons in
the water provided the target for 
inverse beta decay; cadmium chloride
dissolved in the water provided the 
cadmium nuclei that would capture 
the neutrons. The target tanks were
sandwiched between three large scintil-
lation detectors labeled I, II, and III
(total capacity 4,200 liters), each 

Figure 4. The Savannah River Neutrino Detector—A New Design
The neutrino detector is illustrated here inside its lead shield. Each of two large, flat
plastic tanks (pictured in light blue and labeled A and B) was filled with 200 liters of
water. The protons in the water provided the target for inverse beta decay; cadmium
chloride dissolved in the water provided the cadmium nuclei that would capture the
neutrons. The target tanks were sandwiched between three scintillation detectors 
(I, II, and III). Each detector contained 1,400 liters of liquid scintillator that was viewed 
by 110 photomultiplier tubes. Without its shield, the assembled detector weighed 
about 10 tons. 
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having 110 photomultiplier tubes to
collect scintillation light and produce
electronic signals. 

In this sandwich configuration, a
neutrino-induced event in, say, tank A
would create two pairs of proton
prompt-coincidence pulses from detec-
tors I and II flanking tank A. The first
pair of pulses would be from positron
annihilation and the second from 
neutron capture. The two pairs would
be separated by about 3 to 10 microsec-
onds. Finally, no signal would emanate
from detector III because the gamma
rays from positron annihilation and
neutron capture in tank A are too low
in energy to reach detector III. 

Thus, the spatial origin of the event
could be deduced with certainty, and
the signals would be distinguished from
false delayed-coincidence signals 
induced by stray neutrons, gamma rays,
and other stray particles from cosmic-
ray showers or from the reactor. These
spurious signals would most likely 
trigger detectors I, II, and III in a 
random combination. The all-important
electronics were designed primarily by
Kiko Harrison and Austin McGuire.

The box entitled “Delayed-
Coincidence Signals from Inverse Beta
Decay” (page 22) illustrates delayed-
coincidence signals from the detector’s
top triad (composed of target tank A
and scintillation detectors I and II).
Once the delayed-coincidence signals
have been recorded, the neutrino-
induced event is complete. The signals
from the positron and neutron circuits,
which have been stored on delay lines,
are presented to the oscilloscopes. 

Figure 5 shows a few samples of 
oscilloscope pictures—some are accept-
able signals of inverse beta decay while
others are not.

Austin McGuire was in charge of
the design and construction of the 
“tank farm” that would house and
transport the thousands of gallons of
liquid scintillator needed for the experi-
ment. Three steel tanks were placed on
a flat trailer bed. The interior surfaces
of the tanks were coated with epoxy to
preserve the purity of the liquids.

Today, the need for purity and cleanli-
ness is becoming legendary as 
researchers build an enormous tank for
the next generation of solar-neutrino
experiments (see the article “Exorcising
Ghosts” on page 136), but even in 
the 1950s, possible background conta-
mination was an overriding concern. 

Since the scintillator had to be 
kept at a temperature not lower than 
60 degrees Fahrenheit, the outside 
walls of the tanks were wrapped with 
several layers of fiberglass insulating
material, and long strips of electrical
heating elements were embedded in 
the exterior insulation.

During the previous winter, while
the equipment was being designed and
built, John Wheeler encouraged and
supported the team, and he helped

pave the way for the next neutrino
measurement to be done at the new,
very powerful fission reactor at the
Savannah River Plant in South 
Carolina. By November 1955, the 
Los Alamos group was ready and once
again packed up for the long trip to
the Savannah River Plant.

The only suitable place for the 
experiments was a small, open area in
the basement of the reactor building,
barely large enough to house the detec-
tor. There, 11 meters of concrete would
separate the detector from the reactor
core and serve as a shield from reactor-
produced neutrons, and 12 meters 
of overburden would help eliminate 
the troublesome background 
neutrons, charged particles, and 
gamma rays produced by cosmic rays. 

Schuch’s idea gave birth to the 
Los Alamos total-immersion, or
“whole-body,” counter (see box “The
Whole-Body Counter” on page 15),
which was similar in design to the 
detector for Project Poltergeist but was
built especially to count the radioactive
contents of people. Since counting 
with this new device took only a few
minutes, it was a great advance over
he standard practice of using multiple

Geiger counters or sodium iodide (NaI)
crystal spectrometers in an underground
aboratory. The Los Alamos whole-

body counter was used during the
1950s to determine the degree to which
adioactive fallout from nuclear tests

and other nuclear and natural sources
was taken up by the human body. 

The Hanford Experiment

In the very early spring of 1953, the
Project Poltergeist team packed up 
Herr Auge, the 300-liter neutrino detec-
or, as well as numerous electronics

and barrels of liquid scintillator, and set
out for the new plutonium-producing
eactor at the Hanford Engineering

Works in Hanford, Washington. It was
he country’s latest and largest fission
eactor and would therefore produce
he largest flux of antineutrinos. 

Various aspects of the setup at Hanford
are shown in the photo collage. 

The equipment for the liquid scintil-
ator occupied two trucks parked 

outside the reactor building. One was
used to house barrels of liquid; in a sec-
ond smaller truck, liquid scintillators
were mixed according to various recipes
before they would be pumped into the
detector. Herr Auge was placed inside
he reactor building, very near the face

of the reactor wall, and was surrounded
by the homemade boron-paraffin shield-
ng intermixed with nearly all the lead

shielding available at Hanford. This
shield was to stop reactor neutrons and
gamma rays from entering the detector
and producing unwanted background. In
all, 4 to 6 feet of paraffin alternated with
4 to 8 inches of lead.

The electronic gear for detecting the
telltale delayed-coincidence signal from
inverse beta decay was inside the reac-
tor building. Its essential elements were
two independent electronic gates: one
to accept pulses characteristic of the
positron signal and the other to accept
pulses characteristic of the neutron-
capture signal. The two circuits were
connected by a time-delay analyzer. 

If a pulse appeared in the output of
the neutron circuit within 9 microsec-
onds of a pulse in the output of the
positron circuit, the count was regis-
tered in the channel that recorded 
delayed coincidences. Allowing for 
detector efficiencies and electronic 
gate settings and taking into account
the neutrino flux from the reactor, the 
expected rate for delayed coincidences
from neutrino-induced events was 
0.1 to 0.3 count per minute.

For several months, the team
stacked and restacked the shielding and
used various recipes for the liquid 
scintillator (see Hanford Menu in 
“The Hanford Experiment” collage).
Then they would set the electronics 
and listen for the characteristic double
clicks that would accompany detection
of the inverse beta decay. Despite the
exhausting work, the results were not
definitive. The delayed-coincidence
background, present whether or not the
reactor was on, was about 5 counts per
minute, many times higher than the 
expected signal rate. 

The scientists guessed that the back-
ground was due to cosmic rays entering
the detector, but the addition of various
types of shielding left the background
rate unchanged. Subsequent work 
underground suggested that the 
Hanford background of delayed-
coincidence pulses was indeed due to
cosmic rays. Reines and Cowan (1953)
reported a small increase in the number
of delayed coincidences when the 
reactor was on versus when it was 
off. Furthermore, the increase was 
consistent with the number expected
from the estimated flux of reactor 
neutrinos. This was tantalizing but 
insufficient evidence that neutrino

events were being detected. The 
Hanford experience was poignantly
summarized by Cowan (1964). 

“The lesson of the work was clear:
It is easy to shield out the noise men
make, but impossible to shut out the
cosmos. Neutrons and gamma rays
from the reactor, which we had feared
most, were stopped in our thick walls
of paraffin, borax and lead, but the 
cosmic ray mesons penetrated gleefully,
generating backgrounds in our equip-
ment as they passed or stopped in it.
We did record neutrino-like signals but
the cosmic rays with their neutron sec-
ondaries generated in our shields were
10 times more abundant than were 
the neutrino signals. We felt we had the
neutrino by the coattails, but our 
evidence would not stand up in court.”

The Savannah River
Experiment

After the Hanford experience, the
Laboratory encouraged Reines and
Cowan to set up a formal group with
the sole purpose of tracking neutrinos.
Other than the scientists who had 
already been working on neutrinos,
Kiko Harrison, Austin McGuire, and
Herald Kruse (a graduate student at the
time) were included in this group. 

They spent the following year 
redesigning the experiment from top to
bottom: detector, electronics, scintilla-
tor liquids, the whole works. The detec-
tor was entirely reconfigured to better
differentiate between events induced by
cosmic rays and those initiated in the
detector by reactor neutrinos. Figure 4
shows the new design. 

Two large, flat plastic tanks (called
the “target tanks” and labeled A and B)
were filled with water. The protons in
the water provided the target for 
inverse beta decay; cadmium chloride
dissolved in the water provided the 
cadmium nuclei that would capture 
the neutrons. The target tanks were
sandwiched between three large scintil-
lation detectors labeled I, II, and III
(total capacity 4,200 liters), each 

Figure 4. The Savannah River Neutrino Detector—A New Design
The neutrino detector is illustrated here inside its lead shield. Each of two large, flat
plastic tanks (pictured in light blue and labeled A and B) was filled with 200 liters of
water. The protons in the water provided the target for inverse beta decay; cadmium
chloride dissolved in the water provided the cadmium nuclei that would capture the
neutrons. The target tanks were sandwiched between three scintillation detectors 
(I, II, and III). Each detector contained 1,400 liters of liquid scintillator that was viewed 
by 110 photomultiplier tubes. Without its shield, the assembled detector weighed 
about 10 tons. 
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Solar Neutrinos

• Blessing	of	weak	interactions	–	
carry	information	from	deep	inside	
heavy	objects.

• Rate	of	neutrinos	from	fusion	is	
extremely	sensitive	to	the	
temperature	of	the	sun.
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�e + 37Cl! e� + 37Ar

Ray Davis
at Homestake

1969Solar Neutrinos become a Problem



Alex Himmel 22

1969-
1991



The Solution: Neutrino Oscillations

Discovered	in	1998	by	
Super-Kamiokande

Alex Himmel 23

T. Kajita
Neutrino 1998

Atmospheric
Neutrinos

Super-K

1998



• Create	in	one	flavor	(νμ),	but	detect	in	another	(νe)

Neutrino Oscillations

24
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• Create	in	one	flavor	(νμ),	but	detect	in	another	(νe)

Neutrino Oscillations
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◆
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✓
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◆

“Mixing Matrix”

• Each	flavor	(e,	µ)	is	a	superposition	of	different	masses	(1,	2)
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A Colorful Analogy
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Neutrino Oscillations
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Neutrino Oscillations
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Neutrino Oscillations
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Neutrino Oscillations
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νμ = νe					 νµ=
ν1
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Neutrino	oscillations	
require	that	neutrinos	

have	mass!



Neutrino Oscillations
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Neutrino Oscillations
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• With	only	2	neutrinos,	the	oscillation	formula	is	simple:

P (⌫µ!⌫µ) = 1�sin2(2✓) sin2
✓
�m2L

4E

◆



Three-flavor Neutrino Oscillations

• Oscillations	among	the	three	
neutrino	flavors	depend	on:
– The	mixing	matrix
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Three-flavor Neutrino Oscillations

• Oscillations	among	the	three	
neutrino	flavors	depend	on:
– The	mixing	matrix

• θ23,	θ13,	δCP, θ12
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Three-flavor Neutrino Oscillations

• Oscillations	among	the	three	
neutrino	flavors	depend	on:
– The	mixing	matrix

• θ23,	θ13,	δCP, θ12
– The	mass	differences

• Δm2
32,	Δm2

21
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Solar Neutrinos
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SNO

• The	definitive	solution	came	from	the	
SNO	experiment,	which	measured	
both	the	νe	and	all-ν	fluxes	together.	
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Understanding oscillations: a world-wide effort
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Understanding oscillations: a world-wide effort
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Understanding oscillations: a world-wide effort
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Sub-dominant term 
due to small θ13

One “dip” due to 
the fixed baseline.

Nunokawa,	Parke,	Valle,	in	“CP	Violation	and	Neutrino	Oscillations”,	
Prog.Part.Nucl.Phys.	60	(2008)	338-402.

How to study oscillations: Disappearance

P (⌫µ ! ⌫µ) ⇡ 1�
⇣
sin2(2✓13) sin

2(✓23)+

cos4(✓13) sin
2(2✓23)

⌘
sin2

✓
�m2L

4E

◆
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Designing an Accelerator ν Experiment
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Designing an Accelerator ν Experiment
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Designing an Accelerator ν Experiment
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How to study oscillations: Disappearance
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How to study oscillations: Disappearance
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How to study oscillations: Disappearance
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53Nunokawa,	Parke,	Valle,	in	“CP	Violation	and	Neutrino	Oscillations”,	
Prog.Part.Nucl.Phys.	60	(2008)	338-402.

How to study oscillations: Appearance
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• Depends	some	on	every	oscillation	parameter.
• Benefit:	can	answer	more	questions.
• Drawback:	degeneracies	make	things	difficult.

P (⌫µ ! ⌫e) ⇡
���
p
Patme

�i(�32+�CP ) +
p
Psol

���
2

⇡Patm + Psol + 2
p
PatmPsol (cos�32 cos �CP ⌥ sin�32 sin �CP )
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Open questions in neutrino oscillations
1. Do	neutrino	oscillations	violate	
CP	symmetry	directly	via	δCP?

2. Is	the	mass	hierarchy	“normal”	
or	“inverted?

3. What	is	the	“octant”	of	θ23?
– Or	is	the	mixing	“maximal”	
(e.g. θ23	=	45°)?
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Aside – what is CP symmetry?

• We	are	very	interested	in	symmetries	and	
broken	symmetries	since	they	are	deeply	
related	to	fundamental	laws.

• C	=	charge,	which	means	particle-
antiparticle	symmetry

• P	=	parity,	which	means	symmetry	under	
mirror	reflections

• Large	violations	of	C	and	P	symmetry	are	
common,	but	violations	of	C	&	P	together	
are	very	rare.

• Important:	more	CP	violation	is	needed	to	
explain	why	the	universe	is	made	of	matter!
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1. Is	the	mass	hierarchy	“normal”	or	“inverted?
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56Neutrino

An
tin

eu
tr

in
o Vacuum and no CP 

violation: neutrinos 
and antineutrinos 

are the same



%eν→µνP
0 2 4 6 8

%
eν

→ µν
P

0

2

4

6

8

NOvA: L=810 km, E=2.0 GeV

=0δ /2π=δ

1. Is	the	mass	hierarchy	“normal”	or	“inverted?
2. Do	neutrino	oscillations	violate	CP	symmetry?

3. What	is	the	“octant”	of	θ23?

57Neutrino

An
tin

eu
tr

in
o CP-violation 

through δ creates 
opposite effects 
in neutrinos and 

antineutrinos



%eν→µνP
0 2 4 6 8

%
eν

→ µν
P

0

2

4

6

8

NOvA: L=810 km, E=2.0 GeV

=0δ /2π=δ
π=δ /2π=3δ

58Neutrino

An
tin

eu
tr

in
o

1. Is	the	mass	hierarchy	“normal”	or	“inverted?
2. Do	neutrino	oscillations	violate	CP	symmetry?

3. What	is	the	“octant”	of	θ23?

CP-violation 
through δ creates 
opposite effects 
in neutrinos and 

antineutrinos



NOvA: L=810 km, E=2.0 GeV
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So, what do we know?
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From	M.	Tórotola	at	NEUTRINO2024	last	week



What are we still trying to learn?

• The	neutrino	mass
– …and	why	it’s	so	small
– But	oscillations	can’t	
answer	those	questions.

• The	ordering	of	the	
neutrino	masses.
– Are	they	like	the	rest	of	the	
particles	or	not?

• Whether	neutrinos	violate	
CP	symmetry.

• Why	neutrino	mixing	is	so	
different	from	quark	
mixing.
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