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NPML 2025
What is NPML?

Neutrino Physics and Machine
Learning

How can we apply new and emerging
machining learning technologies to
neutrino physics?

Newer conference (started 2020,
first in-person 2023)

NPML 2025 was in Tokyo, Japan

NPML 2026 is planned to be at UC
Irvine




NPML 2025

High-Level Overview

Most talks were about how current
neutrino experiments were using ML tools
on their experiments

Track reconstruction, PID, etc...

Other topics included anomaly detection,
detector modeling, interaction modeling,
and more

Start with some general ML ideas, and
then see how they were applied in some of
the NPML reports

I'lltry to hit the highlights, but my hope is this
leads more to adiscussion of how we can best
use ML in neutrino physics

If these topics are of interest, consider signing
up for the NPML mailing list: https://
docs.google.com/forms/d/e/
1FAIpPQLSfmMgVt38Cdul3g0tLétkr 7TNy2Y-
Sv6HPw_dbaPANfg6E6H Tw/viewform
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Machine Learning Basics
Multilayer Perceptron
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Each layer takes a vector of inputs (features), and linearly* maps them to new values
New values are then plugged into an activation function to obtain neuron value

Can chain multiple layers together to analyze complex features

*technically affine 4



Machine Learning Basics
Convolutional Neural Networks

Convolutional Neural Networks
(CNN) are helpful for image analysis

If each pixel were a feature, a MLP
would need many, many weights

Instead pass each neuron only local
information in some neighborhood of
a pixel
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Multiplying features by weights =

convolving pixel values with a kernel

feature map




Machine Learning Basics
Graph Neural Network

Instead of an image (ie dense matrix of data) consider wanting to draw predictions from a
graph

Each node has features, each layer updates based on the edges (which nodes are
connected)

Can extract node, edge, or global level features
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Reconstruction in Super & Hyper-K
Talk by Benjamin Quilain

In Super/Hyper-K each PMT has L i o e
features (charge, time, position, etc) ‘ ¥ i N o ,),“.f: o

Make PMTs into nodes e e R fte
Use GNNs to map PMT graphs into \‘w . 7 . e L.
event classifications R e el
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Deep Neural Network Cascade for the Deep Underground Neutrino Experiment

Talk by Francois Drielsma

Scalable Particle Imaging with Neural Embeddings (SPINE)
CNNs for image-level features

GNNis for interaction-level features

Graph NN
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Graph-SPICE | Paper: arXiv:2102.01033

DNN Cascade for DUNE, F. Drielsma

Primaries
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Simulation-based Inference for Precision Neutrino Physics through Neural Monte Carlo Tuning

Talk by Andrea Sefafini
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On JUNO they are using Normalizing
Flows-based Density Estimators (NFDE)
to generate MC samples for different
physical parameters
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Model density: p(x | g)
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Train amodel to learn how to go from a
physical distribution to a Gaussian
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Throw on the Gaussians to produce MC
distributions

Val. dataset 2.2: kg: 14.55 [g-cm~2-GeV ], fc: 0.475, Y: 9900 [MeV 1]

6 T T T T
—— NFDE's learned transformation 1 0.8[(T3ics

,‘
o
T

\v /
111111111111%11111111111

,.
=

=]

UL DL L DL DL DL L

Prob. density
Prob. density

-
o

aaaad o e da s el s b laaaa

- Transformations: z = f(x, )

RN W SN SN N TN NN NN NN SN SN SN SN SN S ST T S S U S S S .|
ededo i Lo AN ettt e 0.0 0.2 0.4
0.0 25 50 7.5 100 125 150 0.0 25 50 7.5 100 125 150

- - 2 4
Number of photo-electrons: N, . /103 Number of photo-electrons: N, . / 10? Ba Se den5|ty

1073




Determining a TPC Electric Field using Physics-Informed Continuous Normalizing Flows
Talk by Ivy Li
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Model electric field inside XENONNT with
normalizing flows

Physics-informed continuous normalizing
flow to model electron movement
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Al/ML at DUNE

Talk by Jianming Bian

System Prompt
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Supervised Finetuning
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Use LLMs to identify neutrino
interactions? Comont| 008 009 [ Corrant] 006 0.07
Ask the LLM in plain English to interpret WCE e Erent WCE e arrent

i Predicted label Predicted label
the event from 2D LArTPC images (f) cted fabe (:f) cted labe

Figure 5: Finetuned LLaMa 3.2 Vision’s (a) recall matrix (truth normalized)
and (b) precision matrix (prediction normalized).
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Discussion Time




